A finiteness theorem for ends of weighted manifolds with a weighted Poincaré inequality

Authors

  • Tuan-Dung Ha Hanoi Pedagogical University 2, Phu Tho, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2025.4.03.11-25

Abstract

In this paper, we study complete weighted manifolds that satisfy a weighted Poincaré inequality, with the associated weight function assumed to be non-negative throughout the manifold. Our main focus is to study the geometric consequences of such an inequality on the global structure of the manifold, particularly at infinity. Specifically, we prove that such a manifold has only finitely many \(\phi\)-nonparabolic ends, provided that the Bakry-Émery Ricci curvature is bounded from below outside a compact subset with respect to the weight function. This result generalizes several existing theorems in the theory of Riemannian geometry and offers valuable insight into the interplay between curvature conditions and the topology of ends.

References

[1] D. Bakry, M. Émery, “Diffusions hypercontractives” (French), Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., Springer, Berlin, vol. 1123, 1985, pp. 177–206, Jan. 1985, doi: 10.1007/bfb0075847.
[2] H-D. Cao, “Recent progress on Ricci solitons”, from: “Recent advances in geometric analysis”, (Y-I Lee, C-S Lin, M-P Tsui, editors), Adv. Lect. Math., Int. Press, Somerville, MA, vol. 11, pp. 1–38, Oct. 2010,  doi: 10.48550/arXiv.0908.2006.
[3] G.-F. Wei, W. Wylie, “Comparison geometry for the Bakry-Émery Ricci tensor”, J. Differential Geom., vol. 83, no. 2, pp. 377–405, Oct. 2009, doi: 10.4310/jdg/1261495336.
[4] N. T. Dung, C. J. Sung, “Smooth metric measure space with weighted Poincaré inequality”, Math. Z., vol. 273, no. 3-4, pp. 613–632, Apr. 2013, doi: 10.1007/s00209-012-1023-y.
[5] H. T. Dung, “On the structure at infinity of complete smooth metric measure spaces with a weighted Poincaré inequality”, Manuscripta Math., vol. 176, no. 4, article number 45, Jun. 2025, doi: 10.1007/s00229-025-01646-7.
[6] H. P. Fu, “Rigidity and vanishing theorems on smooth metric measure spaces with weighted Poincaré inequality”, Nonlinear Anal., vol. 98, pp. 1–12, Mar. 2014, doi: 10.1016/j.na.2013.12.002.
[7] X.-D. Li, “Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds”, J. Math. Pures Appl., vol. 84, no. 10, pp. 1295–1361, Oct. 2005, doi: 10.1016/j.matpur.2005.04.002.
[8] O. Munteanu, J. P. Wang, “Analysis of weighted Laplacians and applications to Ricci solitons”, Comm. Anal. Geom., vol. 20, no. 1, pp. 55–94, Jan. 2012, doi: 10.4310/cag.2012.v20.n1.a3.
[9] J.-Y. Wu, “A note on the splitting theorem for the weighted measure”, Ann. Global Anal. Geom.,  vol. 43, no. 3, pp. 287–298, Jul. 2013, doi: 10.1007/s10455-012-9346-9.
[10] J.-Y. Wu, “ -Liouville theorems on complete smooth metric measure spaces”, Bull. Sci. Math., vol. 138, no. 4, pp. 510–539, Jun. 2014, doi: 10.1016/j.bulsci.2013.07.002.
[11] P. Li, L. F. Tam, “Harmonic functions and the structure of complete manifolds”, J. Differential Geom., vol. 35, no. 2, pp. 359–383, Feb. 1992, doi: 10.4310/jdg/1214448079.
[12] P. Li, J. P. Wang, “Complete manifolds with positive spectrum”, J. Differential Geom., vol. 58, no. 3, pp. 501–534, Jul. 2001, doi: 10.4310/jdg/1090348357.
[13] P. Li, J. P. Wang, “Complete manifolds with positive spectrum II”, J. Differential Geom., vol. 62, no. 1, pp. 143–162, Sep. 2002, doi: 10.4310/jdg/1090348357.
[14] P. Li, J. P. Wang, “Weighted Poincaré inequality and rigidity of complete manifolds”, Ann. Sci. Éc. Norm. Supér., vol. 39, no. 6, pp. 921–982, Dec. 2006, doi: 10.1016/j.ansens.2006.11.001.
[15] M. Viera, “Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci curvature”, Arch. Math., vol. 101, pp. 581–590, Nov. 2013, doi: 10.1007/s00013-013-0594-0.
[16] J.-Y. Wu, “Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émerymery Ricci curvature II”, Results Math., vol. 63, no. 3-4, pp. 1079–1094, Jun. 2013, doi: 10.1007/s00025-012-0254-x.
[17] J. Zhou, “ -harmonic 1 -forms on smooth metric measure spaces with positive ”, Arch. Math., vol. 116, no. 6,  pp. 693–706, Jun. 2021, doi: 10.1007/s00013-021-01588-y.
[18] K. H. Lam, “Results on a weighted Poincaré inequality of complete manifolds”, Trans. Amer. Math. Soc., vol. 362, no. 10, pp. 5043–5062, Oct. 2010, doi: 10.1090/s0002-9947-10-04894-4.
[19] P. Li, L. F. Tam, “Symmetric Green's functions on complete manifolds”, Amer. J. Math.,  vol.  109, no. 6, pp. 1129–1154,  Dec. 1987, doi: 10.2307/2374588.
[20] P. Li, L. F. Tam, “Weighted  harmonic 1-forms and the topology at infinity of complete noncompact weighted manifolds”, Tohoku Math. J., vol 75, no. 4, pp. 509-526, Dec. 2023, doi: 10.2748/tmj.20220513.
[21] P. Li, “On the Sobolev constant and the -spectrum of a compact Riemannian manifold”, Ann. Sci. École Norm. Sup., vol.13, no. 4, pp. 451–468, Dec. 1980, doi: 10.24033/asens.1392.

 

 

Downloads

Published

30-12-2025

How to Cite

Ha, T.-D. (2025). A finiteness theorem for ends of weighted manifolds with a weighted Poincaré inequality. HPU2 Journal of Science: Natural Sciences and Technology, 4(03), 11–25. https://doi.org/10.56764/hpu2.jos.2025.4.03.11-25

Volume and Issue

Section

Natural Sciences and Technology