Phase transitions and thermodynamic properties of the reissner-nordström black hole in (n + 1) dimensional spacetime

Authors

  • Van-Quyet Hoang Hanoi Pedagogical University 2, Phu Tho, Vietnam
  • Khanh-Linh Nguyen Hanoi Pedagogical University 2, Phu Tho, Vietnam
  • Thi-Trang Nguyen Hanoi Pedagogical University 2, Phu Tho, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2025.4.03.97-104

Abstract

This study investigates the thermodynamic properties and phase transitions of charged Reissner-Nordström Anti-de Sitter black holes in  (n + 1) -dimensional spacetime. The analysis is conducted within the framework of extended phase space thermodynamics, where the cosmological constant is treated as a dynamic pressure. We first derived analytical expressions for key thermodynamic quantities, then performed numerical calculations to explore the phase structure. Our analysis confirms a critical point and a first-order, liquid-gas-like phase transition analogous to the van der Waals system. A key finding is that the spatial dimension n significantly influences the critical parameters; black holes in higher dimensions exhibit higher temperatures and pressures in corresponding states. This work extends the well-known four-dimensional analogy to arbitrary dimensions, offering a more generalized perspective on black hole thermodynamics that is crucial for testing the universality of these phenomena and for higher-dimensional models in fundamental physics.

References

[1] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, vol. 7, no. 8, pp. 2333–2346, Apr. 1973, doi: 10.1103/PhysRevD.7.2333, doi: 10.1103/PhysRevD.7.2333.
[2] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys., vol. 43, no. 3, pp. 199–220, Aug. 1975, doi: 10.1007/BF02345020.
[3] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys., vol. 38, no. 4, pp. 1113–1133, Apr. 1999, doi: 10.1023/A:1026654312961.
[4] M. Natsuume, “AdS/CFT Duality User Guide”, Tokyo, Japan: Springer, 2015, doi: 10.1007/978-4-431-55441-7.
[5] S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys., vol. 87, no. 4, pp. 577–588, 1983, doi: 10.1007/BF01212099.
[6] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black holes and catastrophic holography”, Phys. Rev. D, vol. 60, no. 6, p. 064018, Aug. 1999, doi: 10.1103/PhysRevD.60.064018.
[7] D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes”, Class. Quantum Gravity, vol. 26, no. 19, p. 195011, Oct. 2009, doi: 10.1088/0264-9381/26/19/195011.
[8] B. P. Dolan, “The cosmological constant and the black hole equation of state”, Class. Quantum Gravity, vol. 28, no. 12, p. 125020, Jun. 2011, doi: 10.1088/0264-9381/28/12/125020.
[9] D. Kubizňák, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with a cosmological constant”, Class. Quantum Gravity, vol. 34, no. 6, p. 063001, Mar. 2017, doi: 10.1088/1361-6382/aa5c69.
[10] D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, J. High Energy Phys., vol. 2012, no. 7, p. 33, Jul. 2012, doi: 10.1007/JHEP07(2012)033.
[11] E. Spallucci and A. Smailagic, “Maxwell’s equal area law for charged Anti-deSitter black holes”, Phys. Lett. B, vol. 723, no. 4–5, pp. 436–441, Jul. 2013, doi: 10.1016/j.physletb.2013.05.038.
[12] N. Altamirano, D. Kubizňák, R. B. Mann, and Z. Sherkatghanad, “Kerr-AdS analogue of triple point and solid/liquid/gas phase transition”, Class. Quantum Gravity, vol. 31, no. 4, p. 042001, Feb. 2014, doi: 10.1088/0264-9381/31/4/042001.
[13] S. Gunasekaran, R. B. Mann, and D. Kubizňák, “Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization”, J. High Energy Phys., vol. 2012, no. 11, p. 110, Nov. 2012, doi: 10.1007/JHEP11(2012)110.
[14] L. V. Hoa, N. T. Anh, and D. T. M. Hue, “Phase transition of the reissner-nordstrom black hole”, Hnue Journal of Science, vol. 65, no. 6, p. 46, 2020, doi: 10.18173/2354-1059.2020-0028.
[15] S. H. Hendi and M. H. Vahidinia, “Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source”, Phys. Rev. D, vol. 88, no. 8, p. 084045, Oct. 2013, doi: 10.1103/PhysRevD.88.084045.
[16] R.-G. Cai, L.-M. Cao, L. Li, and R.-Q. Yang, “P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space”, J. High Energy Phys., vol. 2013, no. 9, p. 5, Sep. 2013, doi: 10.1007/JHEP09(2013)005.
[17] S.-W. Wei and Y.-X. Liu, “Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes”, Phys. Rev. D, vol. 87, no. 4, p. 044014, Feb. 2013, doi: 10.1103/PhysRevD.87.044014.
[18] Ö. Ökcü and E. Aydiner, “Joule-Thomson expansion of the charged AdS black holes”, Eur. Phys. J. C, vol. 77, no. 1, p. 24, Jan. 2017, doi: 10.1140/epjc/s10052-017-4598-y.
[19] C. V. Johnson, “Holographic heat engines”, Class. Quantum Gravity, vol. 31, no. 20, p. 205002, Oct. 2014, doi: 10.1088/0264-9381/31/20/205002.
[20] J. Zhang, R.-G. Cai, and H. Yu, “Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space”, Phys. Rev. D, vol. 91, no. 4, p. 044028, Feb. 2015, doi: 10.1103/PhysRevD.91.044028.

 

Downloads

Published

30-12-2025

How to Cite

Hoang, V.-Q. ., Nguyen, K.-L., & Nguyen, T.-T. (2025). Phase transitions and thermodynamic properties of the reissner-nordström black hole in (n + 1) dimensional spacetime. HPU2 Journal of Science: Natural Sciences and Technology, 4(03), 97–104. https://doi.org/10.56764/hpu2.jos.2025.4.03.97-104

Volume and Issue

Section

Natural Sciences and Technology