Algebraic dependences of meromorphic mappings sharing few moving hyperplanes with truncated multiplicity
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.1.3-12Abstract
In this article, we will prove an algebraic dependence theorem for meromorphic mappings into a complex projective space sharing few moving hyperplanes with different truncated multiplicity. Moreover, we also consider the weaker condition: \[\nu _{(f,{a_i}), \le k_i}\le \nu _{(g,{a_i}), \le k_i} \text{ instead of } \nu _{(f,{a_i}), \le k_i}= \nu_{(g,{a_i}), \le k_i}\] for some moving hyperplanes among the given moving hyperplanes. In order to implement this, besides using the technique reported by S. D. Quang in (Two meromorphic mappings having the same inverse images of some moving hyperplanes with truncated multiplicity, Rocky Mountain J. Math., vol. 52, no. 1, pp. 263–273, 2022) we have to separate the 2n + 2 moving hyperplanes from the given p+1 moving hyperplanes. After that, we count multiples of the intersection of the inverse images of the mappings f and g sharing these moving hyperplanes. Our result is an improvement of many previous results in this topic.
References
[1] R. Nevanlinna, “Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen,” Acta Math., vol. 48, pp. 367–391, Jan. 1926, doi: 10.1007/BF02565342.
[2] M. Ru and W. Stoll, “The second main theorem for moving targets,” J. Geom. Anal., vol. 1, no. 2, pp. 99–138, Jun. 1991, doi: 10.1007/BF02938116.
[3] M. Ru, M. and J. Wang, “Truncated second main theorem with moving targets,” Trans. Am. Math. Soc., vol. 356, no. 2, pp. 557–571, Sep. 2003, doi: 10.1090/S0002-9947-03-03453-6.
[4] S. D. Quang, “Second main theorems with weighted counting functions and algebraic dependence of meromorphic mappings,” Proc. Am. Math. Soc., vol. 144, no. 10, pp. 4329–4340, Apr. 2016, doi: 10.1090/proc/13061.
[5] S. D. Quang, “Second main theorems for meromorphic mappings and moving hyperplanes with truncated counting functions,” Proc. Am. Math. Soc., vol. 147, no. 4, pp. 1657–1669, Jan. 2019, doi: 10.1090/proc/14377.
[6] D. D. Thai and S. D. Quang, “Second main theorem with truncated counting function in several complex variables for moving targets”, Forum Math., vol. 20, no. 1, pp. 163–179, Jan. 2008, doi: 10.1515/FORUM.2008.007.
[7] T. B. Cao, and H. X. Yi, “On the multiple values and uniqueness of meromorphic functions sharing small functions as targets,” Bull. Korean Math. Soc., vol. 44, no. 4, pp. 631–640, Nov. 2007, doi: 10.4134/BKMS.2007.44.4.631.
[8] H. H. Giang and N. K. Hue, “Algebraic dependences of meromorphic mappings into a projective space sharing few hyperplanes,” Math. Slovaca., vol. 72, no. 3, pp. 647–660, Jun. 2022, doi: 10.1515/ms-2022-0044.
[9] S. D. Quang, “Algebraic dependences of meromorphic mappings sharing few moving hyperplanes,” Ann. Pol. Math., vol. 108, no. 1, pp. 61–73, Jan. 2013, doi: 10.4064/ap108-1-5.
[10] S. D. Quang, “Degeneracy and finiteness theorems for meromorphic mappings in several complex variables,” Chin. Ann. Math. Ser. B., vol. 40, no. 2, pp. 251–272, Jan. 2019, doi: 10.1007/s11401-019-0131-y.
[11] S. D. Quang, “Algebraic relation of two meromorphic mappings on a Kahler manifold having the same inverse images of hyperplanes,” J. Math. Anal. Appl., vol. 486, no. 1, p. 123888, Jun. 2020, doi: 10.1016/j.jmaa.2020.123888.
[12] S. D. Quang, “Two meromorphic mappings having the same inverse images of some moving hyperplanes with truncated multiplicity,” Rocky Mountain J. Math., vol. 52, no. 1, pp. 263–273, Feb. 2022, doi: 10.1216/rmj.2022.52.263.
[13] S. D. Quang and H. H. Giang, “Algebraic dependences of three meromorphic mappings sharing few moving hyperplanes,” Acta Math. Vietnam., vol. 45, no. 3, pp. 739–748, Oct. 2020, doi: 10.1007/s40306-019-00350-5.
[14] S. D. Quang and L. N. Quynh, “Algebraic dependences of meromorphic mappings sharing few hyperplanes counting truncated multiplicities,” Kodai Math. J., vol. 38, no. 1, pp. 97–118, Mar. 2015, doi: 10.2996/kmj/1426684444.
[15] S. D. Quang and L. N. Quynh, “Two meromorphic mappings having the same inverse images of moving hyperplanes,” Complex Var. Elliptic Equation, vol. 61, no. 11, pp. 1554–1565, Apr. 2016, doi: 10.1080/17476933.2016.1177028.
[16] L. N. Quynh, “Algebraic dependences of meromorphic mappings sharing moving hyperplanes without counting multiplicities,” Asian-Eur. J. Math., vol. 10, no. 3, pp. 1750040, Sep. 2017, doi: 10.1142/S1793557117500401.
[17] P. D. Thoan, P. V. Duc and S. D. Quang, “Algebraic dependence and unicity theorem with a truncation level to 1 of meromorphic mappings sharing moving targets,” Bull. mathématique la Société des Sci. Mathématiques Roum, vol. 56(104), no. 4, pp. 513–526, Apr. 2013, [Online]. Available: https://www.jstor.org/stable/43679374.
[18] Q. Yan and Z. Chen, “Degeneracy theorem for meromorphic mappings with truncated multiplicity,” Acta Math. Sci., vol. 31, no. 2, pp. 549–560, Mar. 2011, doi: 10.1016/S0252-9602(11)60255-5.
[19] H. Fujimoto, “Uniqueness problem with truncated multiplicities in value distribution theory II,” Nagoya Math. J., vol. 155, pp. 161–188, Jan. 1999, doi: 10.1017/S0027763000007030.
[20] J. Noguchi and T. Ochiai, "Geometric function theory in several complex variables," in Translations of Mathematical Monographs, Providence, Rhode Island: American Mathematical Society, Jun. 1990, doi: 10.1090/mmono/080
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Huong-Giang Ha
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.