The Koszulness of numerical semigroup rings of minimal multiplicity
DOI:
https://doi.org/10.56764/hpu2.jos.2023.2.3.3-12Abstract
Let R = k [H] be a numerical semigroup ring over a field k and grm (R) is the associated graded ring of R. In this paper, we show that grm (R) is a Cohen-Macaulay ring, provided H has minimal multiplicity. As a consequence, we conclude that the numerical semigroup ring R = k [H] of minimal multiplicity is a Koszul ring, i.e., the residue field k has a grm (R) – linear free resolution.
References
[1] S. S. Abhyankar, “Local rings of high embedding dimension”, Amer. J. Math., 89, pp.1073-1077, 1967, doi: 10.2307/2373418
[2] L. L. Avramov and D. Eisenbud, “Regularity of modules over a Koszul algebra”, J. Algebra, 153, pp.85-90, 1992, doi: 10.1016/0021-8693(92)90149-G
[3] L. L. Avramov and I. Peeva, “Finite regularity and Koszul algebras”, Amer. J. Math., 123, pp.275-281, 2001, doi: 10.1353/ajm.2001.0008
[4] J. C. Rosales and García-Sánchez, “Numerical Semigroups”, vol. 20, Springer Science & Business Media, 2009, doi: 10.1007/978-1-4419-0160-6
[5] A. Conca, E. De Negri, and M. E. Rossi, “Koszul Algebras and Regularity”, Comm. Algebra, pp.285-315, Springer, New York, 2013, doi: 10.1007/978-1-4614-5292-8_8
[6] A. Conca, N. V. Trung, G. Valla, “Koszul property for points in projective spaces”, Math. Scand., 89, pp.201-216, 1998, doi: 10.7146/math.scand.a-14338
[7] R. Fröberg, “Koszul algebras in Advances in Commutative Ring Theory (Fez, 1997)”, Lecture Notes Pure Appl. Math., 205, Dekker, New York, pp.337-350, 1999, doi: 10.1201/9781003419815-21
[8] A. Garcia, “Cohen-Macaulayness of the associated graded of a semigroup rings”, Comm. Algebra, vol. 10, no. 4, pp.393-415, 1982, doi: 10.1080/00927878208822724
[9] J. Herzog and D. I. Stamate, “Quadratic numerical semigroups and the Koszul property”, Kyoto J. Math., vol. 57, no. 3, pp.585-612, 2017, doi: 10.1215/21562261-2017-0007
[10] E. Kunz, “The value-semigroup of a one-dimensional Gorenstein ring”, Proc. Amer. Math. Soc., 25, pp.748-751, 1970, doi: 10.1090/S0002-9939-1970-0265353-7
[11] Macaulay2, “a software system for research in algebraic geometry”. Available at http://www.math.uiuc.edu/Macaulay2/
[12] I. Peeva, “Graded syzygies”, Springer-Verlag London, 2011, doi:10.1007/978-0-85729-177-6[13] S. B. Priddy, “Koszul resolutions”, Trans. Amer. Math. Soc., 152, pp.39-60, 1970, doi: 10.1090/S0002-9947-1970-0265437-8
[14] L. Robbiano and G. Valla, “On the equations defining tangent cones”, Math. Proc. Cambridge Philos. Soc., vol. 88, no 2, pp.28l-297, 1980, doi: 10.1017/S0305004100057583
[15] V. A. Sapko, “Associated graded rings of numerical semigroup rings”, Comm. Algebra, vol. 29, no. 10, pp.4759-4773, 2001, doi: 10.1081/AGB-100106784
[16] J. D. Sally, “On the associated graded ring of a local Cohen-Macaulay ring”, J. Math. Kyoto Univ., vol. 17, pp.19-21, 1977, doi: 10.1215/kjm/1250522807
[17] M. D’Anna, V. Micale, A. Sammartano, “On the associated graded ring of a semigroup ring”, J. Commut. Algebra, vol. 3, no. 2, pp.147-168, 2011, doi: 10.1216/JCA-2011-3-2-147
[18] M. D’Anna, V. Micale, A. Sammartano, “When the associated graded ring of a semigroup ring is complete intersection”, J. Pure Appl. Algebra, vol. 217, no. 6, pp.1007-1017, 2013, doi: 10.1016/j.jpaa.2012.09.024
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2023 Van-Kien Do, Hong-Ngoc Nguyen
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.