A note on the existence of solutions to the semi-affine variational inequalities problems
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.2.35-45Abstract
The semi-affine variational inequality problem offers a general and versatile framework applicable to many problems in economics, mathematical physics, operations research, and mathematical programming. One of the important applications of the semi-affine variational inequality problem is quadratic programming. It is well-known that the first-order necessary optimality condition for a constrained optimization problem can be rewritten as a variational inequality. This paper investigates the existence of solutions for the semi-affine variational inequality problem in the finite-dimensional Hilbert spaces. Under suitable conditions, we show that the solution set of the semi-affine variational inequality problem is nonempty. The obtained results contribute to and complement the existing literature.
References
[1] N. N. Tam, “Some stability results for the semi-affine variational inequality problem,” Acta Math. Vietnam., vol. 29, no. 3, pp. 271–280, Dec. 2004.
[2] G. Allen, “Variational Inequalities, complementarity problems, and duality theorems,” J. Math. Anal. Appl., vol. 58, pp. 1–10, Mar. 1977, doi: 10.1016/0022-247X(77)90222-0.
[3] F. Facchinei and J. -S. Pang, Finite-dimensional variational inequalities and complementary problems. Springer Science & Business Media, New York, 2003, doi: 10.1007/b97544.
[4] M. S. Gowda and J. S. Pang, “On the boundedness and stability of solutions to the affine variational inequality problem,” SIAM J. Control Optim., vol. 32, no. 2, pp. 421–441, Mar. 1994, doi: 10.1137/S036301299222888X.
[5] G. M. Lee, N. N. Tam, and N. D. Yen, Quadratic programming and affine variational inequalities: A qualitative study, Springer Science & Business Media, New York, 2005.
[6] V. V. Dong, “Optimality conditions for quadratic programming problems on Hilbert spaces,” Taiwan. J. Math., vol. 25, no 5, pp. 1073–1088, Otc. 2021, doi: 10.11650/tjm/210303.
[7] T. V. Nghi, “On stability of solutions to parametric generalized affine variational inequalities,” Optimization, vol. 67, no 2, pp. 269–285, Oct. 2017, doi: 10.1080/02331934.2017.1394297.
[8] T. V. Nghi and N. N. Tam, “General variational inequalities: Existence of solutions, Tikhonov-type regularization, and well-posedness,” Acta Math. Vietnam., vol. 47, no. 2, pp. 539–552, Jul. 2022, doi: 10.1007/s40306-021-00435-0.
[9] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Society for Industrial and Applied Mathematics, New York, 2000, doi: 10.1137/1.9780898719451.
[10] S. László, “Some existence results of solutions for general variational inequalities,” J. Optim. Theory Appl., vol. 150, no. 3, pp. 425–443, Mar. 2011, doi: 10.1007/s10957-011-9830-6.
[11] J. -C. Yao, “Variational inequalities with generalized monotone operators,” Math. Oper. Res., vol. 19, no 3, pp. 691–705, Aug. 1994, doi: 10.1287/moor.19.3.691.
[12] J. F. Bonnans and A. Shapiro, Eds. Perturbation analysis of optimization problems (Springer series in operations research and financial engineering). New York, USA: Springer, 2000, doi: 10.1007/978-1-4612-1394-9.
[13] H. -H. Nguyen, N. -T. Hoang, and V.-T. Nguyen, “On the tangent sets of constraint systems,” HPU2. Nat. Sci. Tech, vol. 1, no. 1, pp. 31–39, Aug. 2022, doi: 10.56764/hpu2.jos.2022.1.1.31-39.
[14] N.H. Hung, H. N. Tuan, and N.V. Tuyen, “On second-order sufficient optimality conditions,” HPU2 Journal of Science, 74, pp. 3–11, Aug. 2021.
[15] M. S, Gowda, “A characterization of positive semidefinite operators on a Hilbert space,” J. Optim. Theory Appl., vol. 48 , no 3, pp. 419–425, Mar. 1986, doi: 10.1007/bf00940568.
[16] M. S. Gowda and T. I. Seidman, “Generalized linear complementarity problems,” Math. Program., vol. 46, no. 1, pp. 329–340, Jan. 1990, doi: 10.1007/BF01585749.
[17] B. S. Mordukhovich and N. M. Nam, Convex analysis and beyond: Volume I: Basic Theory, Springer Nature, 2022, doi: 10.1007/978-3-030-94785-9.
[18] G. Isac, V. Bulavski, and V.Kalashnikov, “Exceptional Familes, topological degree and complementarity problems,” J. Glob. Optim., vol. 10, no. 2, pp. 207–225, Mar. 1997, doi: 10.1023/A:1008284330108.
[19] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2017, doi: 10.1007/978-3-319-48311-5.
[20] V. V. Dong and N. N. Tam, “On the solution existence for convex quadratic programming problems in Hilbert spaces,” Taiwan. J. Math. vol. 20, no 6, pp. 1417–1436, Dec. 2016, doi: 10.11650/tjm.20.2016.6936.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Van-Dong Vu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.