Hydrothermal synthesis of CdTe quantum dots using ammonia as a reducing agent

Authors

  • Jung Hoon Song Mokpo National University, Muan-gun, Republic of Korea
  • Thi-Phuong Nguyen Pho Moi high school, Bac Ninh, Vietnam
  • Duy-Khanh Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Xuan-Bach Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Phuong-Nam Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Sinh-Hung Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Van-Tuan Mai Electric Power University, Hanoi, Vietnam
  • Phuong-Uyen Pham Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Hai-Yen Vu Thi Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Mai-Xuan Dung Hanoi Pedagogical University 2, Vinh Phuc, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2024.3.2.3-9

Abstract

Water-soluble CdTe quantum dots (QDs) have been applied in various fields, such as photoluminescent imaging, labeling agents in immune analysis, heavy metal ion sensing, and solar cells. The synthesis of CdTe QDs has relied vastly on reactions between Cd2+ and Te2- ions in the presence of mercapto ligands. Te2- ions are usually formed in situ in the synthetic solution by reducing tellurite ions with hydride salts, such as NaBH4 which gives rise to the emission of highly explosive hydrogen gas. Herein, we report a novel method to synthesize CdTe QDs by using ammonia as a reducing agent. We demonstrate that under hydrothermal conditions, ammonia can reduce tellurite forming telluride ions which react with cadmium ions in the presence of glutathione forming CdTe QDs. The resultant QDs exhibited high photoluminescence and resolvable absorption. The synthetic method demonstrated herein could reduce the cost of CdTe-based quantum dots for rapid deployment. 

References

[1] L. Zou et al., “Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase,” J. Mater. Chem., vol. 18, no. 24, p. 2807, Jan. 2008, doi: 10.1039/b801418c. 
[2] U. Resch, H. Weller, and A. Henglein, “Photochemistry and radiation chemistry of colloidal semiconductors. 33. Chemical changes and fluorescence in CdTe and ZnTe,” Langmuir, vol. 5, no. 4, pp. 1015–1020, Jul. 1989, doi: 10.1021/la00088a023.
[3] T. Rajh, O. I. Mićić, and A. J. Nozik, “Synthesis and characterization of surface-modified colloidal CdTe quantum dots,” J. Phys. Chem., vol. 97, no. 46, pp. 11999–12003,  Nov. 1993, doi: 10.1021/j100148a026.
[4] A. L. Rogach et al., “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C, vol. 111, no. 40, pp. 14628–14637, Sep. 2007, doi: 10.1021/jp072463y.
[5] M. Gao et al., “Strongly photoluminescent CdTe nanocrystals by proper surface modification,” J. Phys. Chem. B, vol. 102, no. 43, pp. 8360–8363, Otc. 1998, doi: 10.1021/jp9823603.
[6] H. Zhang, Z. Zhou, B. Yang, and M. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B, vol. 107, no. 1, pp. 8–13, Dec. 2002, doi: 10.1021/jp025910c.
[7] T. D. T. Ung, T. K. C. Tran, T. N. Pham, D. N. Nguyen, D. K. Dinh, and Q. L. Nguyen, “CdTe and CdSe quantum dots: Synthesis, characterizations and applications in agriculture,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 3, no. 4, p. 043001, Nov. 2012, doi: 10.1088/2043-6262/3/4/043001.
[8] L. Jing et al., “Aqueous based semiconductor nanocrystals,” Chem. Rev., vol. 116, no. 18, pp. 10623–10730, Sep. 2016, doi: 10.1021/acs.chemrev.6b00041.
[9] D. Vorontsov, A. Fučíková, V. Dědič, and J. Valenta, “Cd-free photoluminescent composites based on the ternary chalcogenides quantum dots,” Opt. Mater. (Amst)., vol. 143, p. 114208, Sep. 2023, doi: 10.1016/j.optmat.2023.114208.
[10] Z. C. Wu et al., “Enhanced photoluminescence quantum yield of red-emitting CdTe:Gd3+ QDs for WLEDs applications,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 3147–3156, Jan. 2020, doi: 10.1111/jace.16994.
[11] H. Li et al., “Silver ion-doped CdTe quantum dots as fluorescent probe for Hg2+ detection,” RSC Adv., vol. 10, no. 64, pp. 38965–38973, Jan. 2020, doi: 10.1039/d0ra07140d.
[12] Z. Xiaoyong et al., “(Yb3+, Mn2+) co-doped CdTe nanocrystals with enhanced quantum yields and red-shift emission,” J. Indian Chem. Soc., vol. 99, no. 9, p. 100651, Sep. 2022, doi: 10.1016/j.jics.2022.100651.
[13] T. T. Thu Huong, N. T. Loan, D. X. Loc, U. T. Dieu Thuy, O. Stoilova, and N. Q. Liem, “Enhanced luminescence in electrospun polymer hybrids containing Mn-doped ZnSe/ZnS nanocrystals,” Opt. Mater. (Amst)., vol. 113, p. 110858, Mar. 2021, doi: 10.1016/j.optmat.2021.110858.
[14] W. Li, J. Liu, K. Sun, H. Dou, and K. Tao, “Highly fluorescent water soluble CdxZn1−xTe alloyed quantum dots prepared in aqueous solution: One-step synthesis and the alloy effect of Zn,” J. Mater. Chem., vol. 20, no. 11, p. 2133, Jan. 2010, doi: 10.1039/b921686c.
[15] C. R. S. Matos, L. P. M. Candido, H. O. Souza, L. P. da Costa, E. M. Sussuchi, and I. F. Gimenez, “Study of the aqueous synthesis, optical and electrochemical characterization of alloyed ZnxCd1-xTe nanocrystals,” Mater. Chem. Phys., vol. 178, pp. 104–111, Aug. 2016, doi: 10.1016/j.matchemphys.2016.04.076.
[16] Q. B. Hoang et al., “Size-dependent reactivity of highly photoluminescent CdZnTeS alloyed quantum dots to mercury and lead ions,” Chem. Phys., vol. 552, p. 111378, Jan. 2022, doi: 10.1016/j.chemphys.2021.111378.
[17] U. T. D. Thuy and N. Q. Liem, “Transition from type-I to type-II CdTe/CdS core/shell quantum dots synthesized in water at low temperature,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 4, p. 045010, Oct. 2013, doi: 10.1088/2043-6262/4/4/045010.
[18] U. T. D. Thuy, W. S. Chae, W. G. Yang, and N. Q. Liem, “Enhanced fluorescence properties of type-I and type-II CdTe/CdS quantum dots using porous silver membrane,” Opt. Mater. (Amst)., vol. 66, pp. 611–615, Apr. 2017, doi: 10.1016/j.optmat.2017.03.012.
[19] Q. Wang, T. Fang, P. Liu, B. Deng, X. Min, and X. Li, “Direct synthesis of high-quality water-soluble CdTe:Zn2+ quantum dots,” Inorg. Chem., vol. 51, no. 17, pp. 9208–9213, Sep. 2012, doi: 10.1021/ic300473u.
[20] Z. Sheng, H. Han, X. Hu, and C. Chi, “One-step growth of high luminescence CdTe quantum dots with low cytotoxicity in ambient atmospheric conditions,” Dalt. Trans., vol. 39, no. 30, p. 7017, Jan. 2010, doi: 10.1039/c002618b.
[21] L. N. Chen, J. Wang, W. T. Li, and H. Y. Han, “Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo,” Chem. Commun., vol. 48, no. 41, p. 4971, Jan. 2012, doi: 10.1039/c2cc31259j.
[22] X. Xie, X. Wu, T. Liu, H. Li, Y. Wang, and J. Lu, “Aqueous synthesis of luminescent cadmium telluride quantum dots using ascorbic acid as the reducing agent,” Micro Nano Lett., vol. 9, no. 7, pp. 478–481, Jul. 2014, doi: 10.1049/mnl.2014.0084.
[23] B. Bajorowicz, J. Nadolna, W. Lisowski, T. Klimczuk, and A. Zaleska-Medynska, “The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts,” Appl. Catal. B Environ., vol. 203, pp. 452–464, Apr. 2017, doi: 10.1016/j.apcatb.2016.10.027.
[24] Y. Huang, Y. Lan, Q. Yi, H. Huang, Y. Wang, and J. Lu, “Microwave-assisted synthesis of CdTe quantum dots using 3-mercaptopropionic acid as both a reducing agent and a stabilizer,” Chem. Res. Chinese Univ., vol. 32, no. 1, pp. 16–19, Dec. 2016, doi: 10.1007/s40242-015-5279-8.
[25] M. Shen et al., “Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly,” Nanoscale Res. Lett., vol. 8, p. 253, May 2013, doi: 10.1186/1556-276x-8-253.
[26] J. Du et al., “Microwave-assisted synthesis of highly luminescent glutathione-capped Zn1−xCdxTe alloyed quantum dots with excellent biocompatibility,” J. Mater. Chem., vol. 22, no. 22, p. 11390, Jan. 2012, doi: 10.1039/c2jm30882g.
[27] C.-F. Peng, Y.-Y. Zhang, Z.-J. Qian, and Z.-J. Xie, “Fluorescence sensor based on glutathione capped CdTe QDs for detection of Cr3+ ions in vitamins,” Food Sci. Hum. Wellness, vol. 7, no. 1, pp. 71–76, Mar. 2018, doi: 10.1016/j.fshw.2017.12.001.
[28] O. Adegoke and E. Y. Park, “Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots,” Sci. Rep., vol. 6, no. 1, p. 27288, Jun. 2016, doi: 10.1038/srep27288.
[29] Y. Jiang et al., “Ultrafast synthesis of near-infrared-emitting aqueous CdTe/CdS quantum dots with high fluorescence,” Mater. Today Chem., vol. 20, p. 100447, Dec. 2021, doi: 10.1016/j.mtchem.2021.100447.
[30] S. R. Stürzenbaum et al., “Biosynthesis of luminescent quantum dots in an earthworm,” Nat. Nanotechnol., vol. 8, no. 1, pp. 57–60, Dec. 2012, doi: 10.1038/nnano.2012.232.
[31] M. Bouroushian, “Electrochemistry of the chalcogens,” in Monographs in electrochemistry. Berlin, Heidelberg: Springer, 2010, pp. 57–75. doi: 10.1007/978-3-642-03967-6_2.
[32] A. Mirzahosseini and B. Noszál, “Species-specific standard redox potential of thiol-disulfide systems: A key parameter to develop agents against oxidative stress,” Sci. Rep., vol. 6, no.1, p. 37596, Nov. 2016, doi: 10.1038/srep37596.
[33] P. L. Dunn, B. J. Cook, S. I. Johnson, A. M. Appel, and R. M. Bullock, “Oxidation of ammonia with molecular complexes,” J. Am. Chem. Soc., vol. 142, no. 42, pp. 17845–17858, Sep. 2020, doi: 10.1021/jacs.0c08269.

 

 

Downloads

Published

30-08-2024

How to Cite

Jung Hoon Song, Nguyen , T.-P., Nguyen , D.-K., Nguyen , X.-B., Nguyen , P.-N., Nguyen , S.-H., Mai, V.-T., Pham, P.-U., Vu Thi, H.-Y., & Dung, M.-X. (2024). Hydrothermal synthesis of CdTe quantum dots using ammonia as a reducing agent. HPU2 Journal of Science: Natural Sciences and Technology, 3(2), 3–9. https://doi.org/10.56764/hpu2.jos.2024.3.2.3-9

Volume and Issue

Section

Natural Sciences and Technology

Similar Articles

You may also start an advanced similarity search for this article.