Viscosity solutions of the augmented K -Hessian equations in exterior domains
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.2.70-79Abstract
This paper examines the Dirichlet problem for augmented k -Hessian equations in exterior domains. Building upon our previous results on the viscosity solutions to the Dirichlet problems for augmented k -Hessian equations in the bounded domain, and L. Dai, J. Bao's method to the k -Hessian equations in exterior domains, a sufficient condition for the existence and uniqueness of viscosity solutions to the Dirichlet problem for the augmented k -Hessian equations in exterior domains have been proven. During the process, a slight adjustment to the result on the existence and uniqueness of viscosity solutions to the problem in the bounded domains has been made for use in the present situation.
References
[1] M. G. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Am. Math. Soc., vol. 27, no. 1, pp. 1–67, 1992, doi: 10.1090/s0273-0979-1992-00266-5.
[2] L. A. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian,” Acta Math., vol. 155, pp. 261–301, Jan. 1985, doi: 10.1007/bf02392544.
[3] Y. Li, L. Nguyen, and B. Wang, “Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations,” Calc. Var. Partial Differ. Equ., vol. 57, no. 4, Jun. 2018, doi: 10.1007/s00526-018-1369-z.
[4] Y. Li and B. Wang, “Strong comparison principles for some nonlinear degenerate elliptic equations,” Acta Math. Sci., vol. 38, no. 5, pp. 1583–1590, Sep. 2018, doi: 10.1016/s0252-9602(18)30833-6.
[5] A. Colesanti and P. Salani, “Hessian equations in non-smooth domains,” Nonlinear Anal. Theory Methods Appl., vol. 38, no. 6, pp. 803–812, Dec. 1999, doi: 10.1016/s0362-546x(98)00121-7.
[6] X.-J. Wang, “The k-Hessian Equation,” in Lecture notes in mathematics, Jan. 2009, pp. 177–252, doi: 10.1007/978-3-642-01674-5_5.
[7] B. Wang and J. Bao, “Asymptotic behavior on a kind of parabolic Monge–Ampère equation,” J. Differ. Equ., vol. 259, no. 1, pp. 344–370, Jul. 2015, doi: 10.1016/j.jde.2015.02.029.
[8] J. Bao, H. Li, and L. Zhang, “Monge–Ampère equation on exterior domains,” Calc. Var. Partial Differ. Equ., vol. 52, no. 1, pp. 39–63, Dec. 2013, doi: 10.1007/s00526-013-0704-7.
[9] F. Jiang, N. S. Trudinger, and X.-P. Yang, “On the Dirichlet problem for a class of augmented Hessian equations,” J. Differ. Equ., vol. 258, no. 5, pp. 1548–1576, Mar. 2015, doi: 10.1016/j.jde.2014.11.005.
[10] H. T. Ngoan and T. T. K. Chung, “Elliptic solutions to nonsymmetric Monge-Ampère type equations II. A priori estimates and the Dirichlet problem,” Acta math. Vietnam., vol. 44, no. 3, pp. 723–749, Jun. 2018, doi: 10.1007/s40306-018-0270-3.
[11] Van, T.-N. Ha, H.-T. Nguyen, T.-T. Phan, and L.-H. Nguyen, “Viscosity solutions of the augmented K- Hessian equations,” HPU2. Nat. Sci. Tech., vol. 1, no. 1, pp. 3–9, Aug. 2022, doi: 10.56764/hpu2.jos.2022.1.1.3-9.
[12] J. Bao, H. Li, and Y. Li, “On the exterior Dirichlet problem for Hessian equations,” Trans. Am. Math. Soc., vol. 366, no. 12, pp. 6183–6200, Jun. 2014, doi: 1090/s0002-9947-2014-05867-4.
[13] L. Dai and J. Bao, “On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains,” Front. Math. China, vol. 6, no. 2, pp. 221–230, Mar. 2011, doi: 10.1007/s11464-011-0109-x.
[14] X. Cao and J. Bao, “Hessian equations on exterior domain,” J. Math. Anal. Appl., vol. 448, no. 1, pp. 22–43, Apr. 2017, doi: 10.1016/j.jmaa.2016.10.068.
[15] H. Li and L. Dai, “The Dirichlet problem of Hessian equation in exterior domains,” Mathematics, vol. 8, no. 5, pp. 666–666, Apr. 2020, doi: 10.3390/math8050666.
[16] M. H. Nguyen, Eds. Partial differential equation (Part I), Hanoi, Vietnam: HNUE publishing house, 2006.
[17] W. -M. Ni, “Uniqueness of solutions of nonlinear Dirichlet problems,” J. Differ. Equ., vol. 50, no. 2, pp. 289–304, Nov. 1983, doi: 10.1016/0022-0396(83)90079-7.
[18] Y. Li and W. Ma, “Existence of classical solutions for nonlinear elliptic equations with gradient terms,” Entropy, vol. 24, no. 12, p. 1829, Dec. 2022, doi: 10.3390/e24121829.
[19] D. Gilbarg and N. S. Trudinger, Eds. Elliptic partial differential equations of second order (Classics in Mathematics). Heidelberg, Germany: Springer, 2001. doi: 10.1007/978-3-642-61798-0.
[20] C. Wang and J. Bao, “Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains,” Proc. Am. Math. Soc., vol. 141, no. 4, pp. 1289–1296, Aug. 2012, doi: 10.1090/s0002-9939-2012-11738-1.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Trong-Tien Phan, Hong-Quang Dinh, Van-Bang Tran
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.