An identification problem governed by nonlinear fractional mobile-immobile equation, Part I: Solvability

Authors

  • Van-Dac Nguyen Thuyloi University, Hanoi, Vietnam
  • Thi-Thu Tran Hanoi Pedagogical University 2, Phu Tho, Vietnam
  • Van-Tuan Tran Hanoi Pedagogical University 2, Phu Tho, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2025.4.02.66-79

Abstract

In this study, we address the inverse source problem of identifying a space-dependent parameter in nonlinear fractional mobile-immobile (FrM-IM) equations. The inverse problem is resolved using supplementary measurements taken at the final time, which are permitted to depend implicitly on the system’s state. This work is presented in two parts. In Part I, we first establish regularity estimates for resolvent operators associated with the linear FrM-IM equation under Dirichlet boundary conditions. Due to these estimates, we employ fixed-point arguments and local analysis on Hilbert scales to rigorously prove the existence and uniqueness of solutions to the nonlinear inverse problem. In Part II (to be addressed separately), under sufficient regularity assumptions on the final datum and the governing nonlinearities, we demonstrate that the solution derived in Part I is, in fact, a strong solution. Our analysis advances the theoretical framework for FrM-IM equations by unifying resolvent operator theory with nonlinear fixed-point methods, thereby providing a foundation for addressing inverse problems in nonlocal transport phenomena.

References

[1] C. G. Gal and M. Warma, Fractional-in-Time Semilinear Parabolic Equations and Applications. Springer International Publishing, 2020. doi: 10.1007/978-3-030-45043-4.
[2] B. Jin, Fractional Differential Equations. Springer International Publishing, 2021. doi: 10.1007/978-3-030-76043-4.
[3] G. Amendola, M. Fabrizio, and J. M. Golden, Thermodynamics of Materials with Memory. Springer International Publishing, 2021. doi: 10.1007/978-3-030-80534-0.
[4] R. L. Magin, “Fractional calculus in bioengineering: A tool to model complex dynamics,” Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 464–469, May. 2012, doi: 10.1109/carpathiancc.2012.6228688.
[5] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Springer Netherlands, 2011. doi: 10.1007/978-94-007-0747-4.
[6] W. Li and A. J. Salgado, “Time fractional gradient flows: Theory and numerics,” Mathematical Models and Methods in Applied Sciences, vol. 33, no. 02, pp. 377–453, Feb. 2023, doi: 10.1142/s0218202523500100.
[7] L. Li and D. Wang, “Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations,” BIT Numerical Mathematics, vol. 62, no. 3, pp. 995–1027, Nov. 2021, doi: 10.1007/s10543-021-00900-0.
[8] R. R. Nigmatullin, “The realization of the generalized transfer equation in a medium with fractal geometry,” Physica status solidi (b), vol. 133, no. 1, pp. 425–430, Jan. 1986, doi: 10.1002/pssb.2221330150.
[9] J. C. Pozo and V. Vergara, “Fundamental solutions and decay of fully non-local problems,” Discrete & Continuous Dynamical Systems - A, vol. 39, no. 1, pp. 639–666, 2019, doi: 10.3934/dcds.2019026.
[10] V. Vergara and R. Zacher, “Optimal Decay Estimates for Time-Fractional and Other NonLocal Subdiffusion Equations via Energy Methods,” SIAM Journal on Mathematical Analysis, vol. 47, no. 1, pp. 210–239, Jan. 2015, doi: 10.1137/130941900.
[11] E. Bazhlekova, B. Jin, R. Lazarov, and Z. Zhou, “An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid,” Numerische Mathematik, vol. 131, no. 1, pp. 1–31, Nov. 2014, doi: 10.1007/s00211-014-0685-2.
[12] P. T. Tuan, T. D. Ke, and N. N. Thang, “Final value problem for Rayleigh-Stokes type equations involving weak-valued nonlinearities,” Fractional Calculus and Applied Analysis, vol. 26, no. 2, pp. 694–717, Feb. 2023, doi: 10.1007/s13540-023-00133-8.
[13] B. de Andrade, G. Siracusa, and A. Viana, “A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up,” Journal of Mathematical Analysis and Applications, vol. 505, no. 2, p. 125524, Jan. 2022, doi: 10.1016/j.jmaa.2021.125524.
[14] W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134–144, Jan. 1989, doi: 10.1063/1.528578.
[15] R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, “Fractal mobile/immobile solute transport,” Water Resources Research, vol. 39, no. 10, Oct. 2003, doi: 10.1029/2003wr002141.
[16] E. Bazhlekova, “Completely Monotone Multinomial Mittag-Leffler Type Functions and Diffusion Equations with Multiple Time-Derivatives,” Fractional Calculus and Applied Analysis, vol. 24, no. 1, pp. 88–111, Jan. 2021, doi: 10.1515/fca-2021-0005.
[17] H. Jiang, D. Xu, W. Qiu, and J. Zhou, “An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile–immobile equation,” Computational and Applied Mathematics, vol. 39, no. 4, Oct. 2020, doi: 10.1007/s40314-020-01345-x.
[18] X. Zheng and H. Wang, “An Error Estimate of a Numerical Approximation to a Hidden-Memory Variable-Order Space-Time Fractional Diffusion Equation,” SIAM Journal on Numerical Analysis, vol. 58, no. 5, pp. 2492–2514, Jan. 2020, doi: 10.1137/20m132420x.
[19] N. T. Van Anh, N. Van Dac, and T. Van Tuan, “Decay solutions to abstract impulsive fractional mobile–immobile equations involving superlinear nonlinearities,” Fractional Calculus and Applied Analysis, vol. 25, no. 6, pp. 2275–2297, Oct. 2022, doi: 10.1007/s13540-022-00097-1.
[20] N. V. Dac, H. T. Tuan, and T. V. Tuan, “Regularity and large‐time behavior of solutions for fractional semilinear mobile–immobile equations,” Mathematical Methods in the Applied Sciences, vol. 46, no. 1, pp. 1005–1031, Jul. 2022, doi: 10.1002/mma.8563.
[21] N. T. V. Anh and B. T. H. Yen, “Source identification problems for abstract semilinear nonlocal differential equations,” Inverse Problems and Imaging, vol. 16, no. 5, p. 1389, 2022, doi: 10.3934/ipi.2022030.
[22] B. Kaltenbacher and W. Rundell, “Inverse Problems for Fractional Partial Differential Equations,” Graduate Studies in Mathematics, 2023, doi: 10.1090/gsm/230.
[23] T. D. Ke, L. T. P. Thuy, and P. T. Tuan, “An inverse source problem for generalized Rayleigh-Stokes equations involving superlinear perturbations,” Journal of Mathematical Analysis and Applications, vol. 507, no. 2, p. 125797, Mar. 2022, doi: 10.1016/j.jmaa.2021.125797.
[24] A. Lorenzi and I. I. Vrabie, “Identification for a semilinear evolution equation in a Banach space,” Inverse Problems, vol. 26, no. 8, p. 085009, Jun. 2010, doi: 10.1088/0266-5611/26/8/085009.
[25] B. T. Johansson and D. Lesnic, “A variational method for identifying a spacewise-dependent heat source,” IMA Journal of Applied Mathematics, vol. 72, no. 6, pp. 748–760, Aug. 2007, doi: 10.1093/imamat/hxm024.
[26] V. Isakov, Inverse Problems for Partial Differential Equations. Springer New York, 1998. doi: 10.1007/978-1-4899-0030-2.
[27] H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems. Birkhäuser Boston, 1989. doi: 10.1007/978-1-4612-3700-6.
[28] G. Express Ltd. Co., A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, “Methods for Solving Inverse Problems in Mathematical Physics,” Mar. 2000, doi: 10.1201/9781482292985. 
[29] L. Evans, “Partial Differential Equations,” Graduate Studies in Mathematics, Mar. 2010, doi: 10.1090/gsm/019.
[30] G. Gripenberg, S. O. Londen, and O. Staffans, “Volterra Integral and Functional Equations,” Mar. 1990, doi: 10.1017/cbo9780511662805.
[31] Ph. Clément and J. A. Nohel, “Asymptotic Behavior of Solutions of Nonlinear Volterra Equations with Completely Positive Kernels,” SIAM Journal on Mathematical Analysis, vol. 12, no. 4, pp. 514–535, Jul. 1981, doi: 10.1137/0512045.
[32] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer Berlin Heidelberg, 2020. doi: 10.1007/978-3-662-61550-8.

 

Downloads

Published

28-08-2025

How to Cite

Nguyen, V.-D. ., Tran , T.-T., & Tran, V.-T. (2025). An identification problem governed by nonlinear fractional mobile-immobile equation, Part I: Solvability. HPU2 Journal of Science: Natural Sciences and Technology, 4(02), 66–79. https://doi.org/10.56764/hpu2.jos.2025.4.02.66-79

Volume and Issue

Section

Natural Sciences and Technology