The sequential Cohen-Macaulayness of idealizations

Authors

  • Van-Loc Phan Hanoi Pedagogical University 2, Phu Tho, Vietnam
  • Minh-Son Doan Hanoi Pedagogical University 2, Phu Tho, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2025.4.03.34-41

Abstract

Let (\(R\), m) be a Noetherian local ring and \(M\) a finitely generated \(R\)-module. The idealization \(R\ltimes M\), introduced by M. Nagata, has become a useful construction in commutative algebra. Recent work has characterized the approximate Cohen–Macaulayness of such idealizations via the length function associated with a good system of parameters. Motivated by these developments, we investigate via the sequential Cohen–Macaulayness of the idealization \(R\ltimes M\). We provide a characterization in terms of the length function with respect to a good system of parameters of the form \((x_1,0),\ldots,(x_r,0)\), where \(r=\dim R\). Furthermore, we provide equivalent conditions for \(R\ltimes M\) to be sequentially Cohen–Macaulay, expressed in terms of the length functions of both \(R\) and \(M\), and their respective dimension filtrations.

References

[1] M. Nagata, Local rings. Tracts in Pure and Applied Mathematics, No. 13, 1962.
[2] Y. Aoyama, “Some basic results on canonical modules,” J. Math. Kyoto Univ., vol. 23, pp. 85–94,  1983, doi: 10.1215/kjm/1250521612.
[3] D. D. Anderson and M. Winders, “Idealization of a module,” J. Commut. Algebra, vol. 1, pp. 3–56,  2009, doi: 10.1216/JCA-2009-1-1-3.
[4] S. Goto and S. Kumashiro, “When is  an almost Gorenstein ring?,” Proc. Amer. Math. Soc., vol. 146, pp. 1431–1437, Nov. 2018, doi: 10.1090/proc/13835.
[5] I. Reiten, “The converse of a theorem of Sharp on Gorenstein modules,” Proc. Amer. Math. Soc., vol. 32, pp. 417-420, 1972, doi: 10.1090/S0002-9939-1972-0296067-7.
[6] S. Goto, R. Takahashi, and N. Taniguchi, “Almost Gorenstein rings-towards a theory of higher dimension,” J. Pure Appl. Algebra, vol. 219, no. 7, pp. 2666–2712, Jul. 2015, doi: 10.1016/j.jpaa.2014.09.022.
[7] K. Yamagishi, “Idealizations of maximal Buchsbaum modules over a Buchsbaum ring,” Math. Proc. Camb. Phil. Soc., vol. 104, pp. 451–478, Nov. 1988, doi: 10.1017/S0305004100065658.
[8] D. T. Cuong, P. H. Nam and L. T. Nhan, “On almost p-standard system of parameters on Idealization and Applications,” J. Pure Appl. Algebra, vol. 228, no. 3, p. 107540, Mar. 2024, doi: 10.1016/j.jpaa.2023.107540.
[9] P.H. Nam, D.V. Kien and P.V. Loc, “When is  an approximately Cohen-Macaulay local rings?,” Rocky Mountain J. Math., accepted, 14 pages, 2024.
[10] P. H. Nam, “On the local cohomology of powers of ideals in idealizations,” Periodica Math. Hungar., vol. 87, pp. 441–455,  Apr. 2023, doi: 10.1007/s10998-023-00526-5.
[11] P. H. Nam, “An almost p-standard system of parameters and approximately Cohen-Macaulay modules,” Acta Math. Hungar., vol. 173, no. 2, pp. 366–399, Jul. 2024, doi: 10.1007/s10474-024-01447-6.
[12] P. H. Nam, “Unmixed torsions and Hilbert coefficients of d-sequences,” J. Algebra, vol. 664, pp. 738-755, Feb. 2025, doi: 10.1016/j.jalgebra.2024.10.014.
[13] P. H. Nam, “New characterizations of sequentially Cohen-Macaulay modules,” preprint, 2025.
[14] P.V. Loc, P.H. Nam, “An almost p-standard system of parameters and the sequential Cohen-Macaulayness of idealizations,” Comm. Algebra, accepted, 15 pages, May 2025, doi: 10.1080/00927872.2025.2499956.
[15] D. T. Cuong,  P. H. Nam and P.H. Quy, “On the length function of saturations of ideal powers,” Acta Math. Vietnam., vol. 43, pp. 275-288, Jun. 2018, doi: 10.1007/s40306-018-0245-4
[16] R. P. Stanley, Combinatorics and Commutative Algebra, Second edition, Birkh user Boston, 1996, doi: 10.1007/b139094.
[17] P. Schenzel, “On the dimension filtration and Cohen-Macaulay filtered modules,” in Proc. of the Ferrara Meeting in honor of Mario Fiorentini, University of Antwerp, Wilrijk, Belgium, 1998, pp. 245–264.
[18] N. T. Cuong and D. T. Cuong, “On sequentially Cohen-Macaulay modules,” Kodai Math. J, vol. 30, no. 1, pp. 409–428,  Oct. 2007, doi: 10.2996/kmj/1193924944.
[19] N. T. Cuong and D. T. Cuong, “On the structure of sequentially generalized Cohen-Macaulay modules,” J. Algebra, vol. 317, pp. 714–742, Nov. 2007, doi: 10.1016/j.jalgebra.2007.06.026.
[20] N. T. Cuong, S. Goto, and H. L. Truong, “Hilbert coefficients and sequentially Cohen-Macaulay modules,” J. Pure Appl. Algebra, vol. 217, pp. 470–480, Mar. 2013, doi: 10.1016/j.jpaa.2012.06.026.
[21] K. Ozeki, H. L. Truong, and H. N. Yen, “Hilbert coefficients and sequentially Cohen-Macaulay rings,” Proc. Amer. Math. Soc., vol. 150, pp. 2367–2383, Mar. 2022, doi: 10.1090/proc/15883.
[22] M. Tousi, S. Yassemi, “Sequentially Cohen-Macaulay modules under base change,” Commun. Algebra, vol. 33, pp. 3977-3987, Feb. 2005, doi: 10.1080/00927870500261132.
[23] P. H. Nam, “On the partial Euler-Poincaré characteristics of Koszul complexes of idealization,” J. Commut. Algebra, vol. 16, no. 1, pp. 75–93, 2024, doi: 10.1216/jca.2024.16.75.
[24] P. H. Nam, “On the uniform bound of reducibility index of parameter ideals of idealizations,” J. Algebra Appl., vol. 22, no. 9, p. 2350183, 2023, doi: 10.1142/S0219498823501839.
[25] D. T. Cuong and P. H. Nam, “Hilbert coefficients and partial Euler-Poincaré characteristics of Koszul complexs of d-sequences,” J. Algebra, vol. 441, pp. 125–158, Nov. 2015, doi: 10.1016/j.jalgebra.2015.06.024.

 

Downloads

Published

30-12-2025

How to Cite

Phan , V.-L., & Doan, M.-S. (2025). The sequential Cohen-Macaulayness of idealizations . HPU2 Journal of Science: Natural Sciences and Technology, 4(03), 34–41. https://doi.org/10.56764/hpu2.jos.2025.4.03.34-41

Volume and Issue

Section

Natural Sciences and Technology