The one-pot synthesis of photoluminescent polycarbonate based on the pyrolysis of citrate

Authors

  • Thuy-Trang Pham Thi Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Viet-Anh Nguyen Dao Duy Tu Education System, Hanoi, Vietnam
  • Huy-Hoang Bui Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Thi-Lam Ha Hanoi Pedagogical University 2, Vinh Phuc, Vietnam
  • Mohapatra Priyaranjan Veer Surendra Sai University of Technology, Odisha, India
  • Xuan-Dung Mai Hanoi Pedagogical University 2, Vinh Phuc, Vietnam

DOI:

https://doi.org/10.56764/hpu2.jos.2024.3.1.57-63

Abstract

Photoluminescent composites that are air-stable and water-resistant are important for outdoor applications such as road marking paints, light-converting membranes, fluorescent paints, and security inks. Photoluminescent thermoplastics fulfill all conditions but their preparation methods which are vastly based on mixing pre-synthesized fluorescent dyes and plastic could lead to emission quenching due to dye aggregation or thermal degradation. Herein, we demonstrated a simple method to prepare photoluminescent polycarbonate by thermal extrusion polycarbonate with citric acid and urea. UV-vis absorption and photoluminescent studies indicate that fluorescent carbon materials were formed via pyrolysis of the citrate. The composites exhibit light blue emission and a broad excitation band. The results demonstrated herein offer a cost-effective method to prepare diverse photoluminescent composites for outdoor applications.

References

[1] M. X. Dung, P. Mohapatra, J.-K. Choi, J.-H. Kim, S.-H. Jeong, and H.-D. Jeong, “InP quantum dot-organosilicon nanocomposites,” Bull. Korean Chem. Soc., vol. 33, no. 5, pp. 1491–1504, May 2012, doi: 10.5012/bkcs.2012.33.5.1491.
[2] J.-K. Choi, M. X. Dung, and H.-D. Jeong, “Novel synthesis of covalently linked silicon quantum dot–polystyrene hybrid materials: Silicon quantum dot–polystyrene polymers of tunable refractive index,” Mater. Chem. Phys., vol. 148, no. 1–2, pp. 463–472, Nov. 2014, doi: 10.1016/j.matchemphys.2014.08.016.
[3] V.-T. Mai, Q. Hoang, and X. Mai, “Enhanced red emission in ultrasound-assisted sol-gel derived ZnO/PMMA nanocomposite,” Adv. Mater. Sci. Eng., vol. 2018, pp. 1–8, Jan. 2018, doi: 10.1155/2018/7252809.
[4] Q.-B. Hoang, V.-T. Mai, D.-K. Nguyen, D. Q. Truong, and X.-D. Mai, “Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite,” Mater. Today Chem., vol. 12, pp. 166–172, Jun. 2019, doi: 10.1016/j.mtchem.2019.01.003.
[5] X.-D. Mai, T.-T. Bui, D.-L. Tran, V.-T. Mai, N.-H. Duong, and V.-H. Nguyen, “One-pot synthesis of homogeneous carbon quantum dots/aluminum hydroxide composite and its application in Cu(II) detection,” Carbon Lett., Vol. 34, no. 2, pp. 603-609, Jan. 2024, doi: 10.1007/s42823-023-00676-z.
[6] L. P. Novo and A. A. S. Curvelo, “Hansen solubility parameters: A tool for solvent selection for organosolv delignification,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14520–14527, Aug. 2019, doi: 10.1021/acs.iecr.9b00875.
[7] M. X. Dung, J.-K. Choi, and H.-D. Jeong, “Newly synthesized silicon quantum dot–polystyrene nanocomposite having thermally robust positive charge trapping,” ACS Appl. Mater. Interfaces, vol. 5, no. 7, pp. 2400–2409, Apr. 2013, doi: 10.1021/am400356r.
[8] X.-D. Mai et al., “Homogeneous and highly photoluminescent composites based on in-situ formed fluorophores in PVA blends,” Mater. Lett., vol. 319, p. 132269, Jul. 2022, doi: 10.1016/j.matlet.2022.132269.
[9] X.-D. Mai et al., “The thermal preparation of luminescent pmma composite using citric acid and ethylenediamine,” TNU J. Sci. Technol., vol. 227, no. 16, pp. 62–67, Oct. 2022, doi: 10.34238/tnu-jst.6470.
[10] X.-D. Mai, T. Thi Kim Chi, T.-C. Nguyen, and V.-T. Ta, “Scalable synthesis of highly photoluminescence carbon quantum dots,” Mater. Lett., vol. 268, p. 127595, Jun. 2020, doi: 10.1016/j.matlet.2020.127595.
[11] M. Langer, T. Hrivnák, M. Medved’, and M. Otyepka, “Contribution of the molecular fluorophore IPCA to excitation-independent photoluminescence of carbon dots,” J. Phys. Chem. C, vol. 125, no. 22, pp. 12140–12148, Jun. 2021, doi: 10.1021/acs.jpcc.1c02243.
[12] H. Chen et al., “Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display,” J. Mater. Sci., vol. 54, no. 2, pp. 1236–1247, Jan. 2019, doi: 10.1007/s10853-018-2933-9.
[13] D. Shan, J. Hsieh, X. Bai, and J. Yang, “Citrate‐based fluorescent biomaterials,” Adv. Healthc. Mater., vol. 7, no. 18, pp. 1–16, Sep. 2018, doi: 10.1002/adhm.201800532.
[14] Z. Xie et al., “Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers,” Acta Biomater., vol. 50, pp. 361–369, Mar. 2017, doi: 10.1016/j.actbio.2017.01.019.
[15] D. Nguyen, T.-S. Le, Q.-T. Le, and X.-D Mai, “The roles of intermediate fluorophores on the optical properties of bottom-up synthesized carbon nanodots,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 2, pp. 68–82, Aug. 2023, doi: 10.56764/hpu2.jos.2023.2.2.68-82.
[16] D. Qu and Z. Sun, “The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route,” Mater. Chem. Front., vol. 4, no. 2, pp. 400–420, Jan. 2020, doi: 10.1039/c9qm00552h.
[17] V. Strauss, H. Wang, S. Delacroix, M. Ledendecker, and P. Wessig, “Carbon nanodots revised: the thermal citric acid/urea reaction,” Chem. Sci., vol. 11, no. 31, pp. 8256–8266, Jan. 2020, doi: 10.1039/d0sc01605e.
[18] R. Verma, S. Torgal, and A. Agarwal, “Experimental stress analysis on polycarbonate material using photoelasticity,” Mater. Today Proc., Sep. 2023, doi: 10.1016/j.matpr.2023.08.270.
[19] Y. Yao, D. Zhou, Y. Shen, H. Wu, and H. Wang, “Highly transparent, writable and photoluminescent foldable polymer film: When fluorescent dyes or pigments join cellulose-based microgel,” Carbohydr. Polym., vol. 263, p. 117977, Jul. 2021, doi: 10.1016/j.carbpol.2021.117977.
[20] S. H. Alrefaee et al., “Electrospun glass nanofibers to strengthen polycarbonate plastic glass toward photoluminescent smart materials,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 302, p. 122986, Dec. 2023, doi: 10.1016/j.saa.2023.122986.
[21] X. Mai, Y. T. H. Phan, and V. Nguyen, “Excitation-independent emission of carbon quantum dot solids,” Adv. Mater. Sci. Eng., vol. 2020, pp. 1–5, Dec. 2020, doi: 10.1155/2020/9643168.
[22] W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N. V. Bashmakova, and D. Bogdał, “Luminescence phenomena of carbon dots derived from citric acid and urea – a molecular insight,” Nanoscale, vol. 10, no. 29, pp. 13889–13894, 2018, doi: 10.1039/c8nr03602k.

Downloads

Published

26-04-2024

How to Cite

Pham Thi, T.-T., Nguyen, V.-A., Bui, H.-H., Ha, T.-L., Mohapatra Priyaranjan, & Mai, X.-D. (2024). The one-pot synthesis of photoluminescent polycarbonate based on the pyrolysis of citrate . HPU2 Journal of Science: Natural Sciences and Technology, 3(1), 57–63. https://doi.org/10.56764/hpu2.jos.2024.3.1.57-63

Volume and Issue

Section

Natural Sciences and Technology