Control the solubility of carbon quantum dots by solvent engineering

Authors

  • Thu-Hoa Do Thi Ecological Primary and Secondary Eraschool, Ha Noi, Viet Nam
  • Duc-Nam Cao Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
  • Thu-Huyen Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
  • Thi-Kieu Pham Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
  • Phuong-Nam Nguyen Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
  • Thanh-Nhan Pham Thi Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
  • Xuan-Dung Mai Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam

DOI:

https://doi.org/10.56764/hpu2.jos.2023.2.3.51-58

Abstract

Solubility parameters of carbon quantum dots (CQDs) are important physical properties to deploy CQDs in various applications such as organic light emitting diodes (OLEDs), light-converting materials in LEDs, and photoluminescent sensors for metal ion detection. Because of the low toxicity and tunable emission most CQDs have been designed to be water-soluble and biocompatible; oil-soluble CQDs that are essential for OLEDs are not yet explored. Herein, we used a solvothermal method to prepare CQDs and demonstrated that the solubility of CQDs could be controlled by the synthetic solvent. We used hydrophobic (toluene), ambipolar (ethanol), and polar (water) solvents to prepare three types of CQDs from citric acid and thiourea. Correlating surface chemistry, solubility, and fluorescent properties of the CQDs suggests that the solubility of CQDs is governed by the dominate surface functional groups while the more diversity in the surface functional groups shift the emission of CQDs to longer wavelengths.

References

[1] R. B. Onyancha et al., “A review of the capabilities of carbon dots for the treatment and diagnosis of cancer-related diseases,” J. Drug Deliv. Sci. Technol., vol. 78, no. October, pp.103946, 2022, doi: 10.1016/j.jddst.2022.103946
[2] Z. Wang and M. Tang, “The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review,” Environ. Res., vol. 194, no. August 2020, pp.110593, 2021, doi: 10.1016/j.envres.2020.110593
[3] D. Nguyen, T. Le, Q.-T. Le, and X. Mai, “The roles of intermediate fluorophores on the optical properties of bottom-up synthesized carbon nanodots,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 2, pp.68–82, Aug. 2023, doi: 10.56764/hpu2.jos.2023.2.2.68-82
[4] T. Q. Nguyen et al., “Universal method for preparation of metal-doped Carbon quantum dots,” TNU J. Sci. Technol., vol. 200, no. 07, pp.3-9, 2019.
[5] M. X. Dung, M. Van Tuan, P. T. Long, and N. T. Mai, “Tuning the Emission Color of Hydrothermally Synthesized Carbon Quantum Dots by Precursor Engineering,” VNU J. Sci. Nat. Sci. Technol., vol. 35, no. 1, Mar. 2019, doi: 10.25073/2588-1140/vnunst.4831
[6] X. Mai, Y. T. H. Phan, and V. Nguyen, “Excitation-Independent Emission of Carbon Quantum Dot Solids,” Adv. Mater. Sci. Eng., vol. 2020, pp.1-5, Dec. 2020, doi: 10.1155/2020/9643168
[7] X.-D. Mai, S.-H. Nguyen, D.-L. Tran, V.-Q. Nguyen, and V.-H. Nguyen, “Single-chip horticultural LEDs enabled by greenly synthesized red-emitting carbon quantum dots,” Mater. Lett., vol. 341, no. March, pp.134195, 2023, doi: 10.1016/j.matlet.2023.134195
[8] F. Yuan et al., “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs,” Nat. Commun., vol. 9, no. 1, pp.2249, Dec. 2018, doi: 10.1038/s41467-018-04635-5
[9] X. Miao et al., “Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization,” Adv. Mater., vol. 30, no. 1, pp.1-8, 2018, doi: 10.1002/adma.201870002
[10] A. Sharma, T. Gadly, S. Neogy, S. K. Ghosh, and M. Kumbhakar, “Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents,” J. Phys. Chem. Lett., vol. 8, no. 5, pp.1044-1052, 2017, doi: 10.1021/acs.jpclett.7b00170
[11] D. Qu and Z. Sun, “The formation mechanism and fluorophores of carbon dots synthesized: Via a bottom-up route,” Mater. Chem. Front., vol. 4, no. 2, pp.400–420, 2020, doi: 10.1039/C9QM00552H
[12] F. Yan, Y. Jiang, X. Sun, J. Wei, L. Chen, and Y. Zhang, “Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes,” Nano Res., vol. 13, no. 1, pp.52-60, 2020, doi:10.1007/s12274-019-2569-3
[13] N. Basu and D. Mandal, “Solvatochromic Response of Carbon Dots: Evidence of Solvent Interaction with Different Types of Emission Centers,” J. Phys. Chem. C, vol. 122, no. 32, pp. 18732-18741, 2018, doi: 10.1021/acs.jpcc.8b04601
[14] H. Wang et al., “Excitation wavelength independent visible color emission of carbon dots,” Nanoscale, vol. 9, no. 5, pp. 1909-1915, 2017, doi: 10.1039/C6NR09200D
[15] D. Chao et al., “Solvent-dependent carbon dots and their applications in the detection of water in organic solvents,” J. Mater. Chem. C, vol. 6, no. 28, pp. 7527-7532, 2018, doi: 10.1039/C8TC02184H
[16] M. Havrdova et al., “Toxicity of carbon dots-Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle,” Carbon N. Y., vol. 99, pp.238-248, 2016, doi: 10.1016/j.carbon.2015.12.027
[17] H. Shabbir, E. Csapó, and M. Wojnicki, “Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing,” Inorganics, vol. 11, no. 6, 2023, doi: 10.3390/inorganics11060262
[18] T.-H. T. Dang, V.-T. Mai, Q.-T. Le, N.-H. Duong, and X.-D. Mai, “Post-decorated surface fluorophores enhance the photoluminescence of carbon quantum dots,” Chem. Phys., vol. 527, no. July, pp.110503, Nov. 2019, doi: 10.1016/j.chemphys.2019.110503
[19] Q.-B. Hoang, V.-T. Mai, D.-K. Nguyen, D. Q. Truong, and X.-D. Mai, “Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite,” Mater. Today Chem., vol. 12, pp.166-172, Jun. 2019, doi: 10.1016/j.mtchem.2019.01.003
[20] X. Lan, H. Ren, X. Yang, J. Wang, P. Gao, and Y. Zhang, “A facile microwave-assisted synthesis of highly crystalline red carbon dots by adjusting the reaction solvent for white light-emitting diodes,” Nanotechnology, vol. 31, no. 21, 2020, doi: 10.1088/1361-6528/ab71b6
[21] R. Kumari and S. K. Sahu, “Effect of Solvent-Derived Highly Luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection,” Langmuir, vol. 36, no. 19, pp. 5287-5295, 2020, doi: 10.1021/acs.langmuir.0c00631
[22] X.-D. Mai, T. Thi Kim Chi, T.-C. Nguyen, and V.-T. Ta, “Scalable synthesis of highly photoluminescence carbon quantum dots,” Mater. Lett., vol. 268, pp.127595, Jun. 2020, doi: 10.1016/j.matlet.2020.127595
[23] H. Yang et al., “Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission,” Nat. Commun., vol. 10, no. 1, pp. 1-11, 2019, doi: 10.1038/s41467-019-09830-6
[24] S. Saxena, T. A. Tyson, S. Shukla, E. Negusse, H. Chen, and J. Bai, “Investigation of structural and electronic properties of graphene oxide,” Appl. Phys. Lett., vol. 99, no. 1, pp.67-70, 2011, doi: 10.1063/1.3607305

Downloads

Published

29-12-2023

How to Cite

Do Thi, T.-H., Cao, D.-N., Nguyen, T.-H., Pham, T.-K., Nguyen, P.-N., Pham Thi, T.-N., & Mai, X.-D. (2023). Control the solubility of carbon quantum dots by solvent engineering. HPU2 Journal of Science: Natural Sciences and Technology, 2(3), 51–58. https://doi.org/10.56764/hpu2.jos.2023.2.3.51-58

Volume and Issue

Section

Natural Sciences and Technology