The roles of intermediate fluorophores on the optical properties of bottom-up synthesized carbon nanodots
DOI:
https://doi.org/10.56764/hpu2.jos.2023.2.2.68-82Abstract
Carbon nanodots (CNDs) are the latest nano-sized carbon materials having unique properties such as biocompatible, highly photoluminescent, and nontoxic which are suitable for diverse applications including lighting, sensing, bioimaging, and biochemical analyzing. CNDs could be synthesized by top-down methods in which graphite is fragmented into nano-sized graphene dots. Alternatively, CNDs could be formed by a bottom-up synthetic strategy where organic molecules are fused together via complex condensation and carbonization processes. Although a great number of organic molecules have been used successfully to prepare CNDs there are very few CNDs that exhibit the quantum size effects. The absorption and emission properties of bottom-up synthesized CNDs rely vastly on molecular-like fluorophores which are the intermediates formed during the fusion of molecular precursors and are incorporated into CNDs in the later states of carbonization processes. This review aims to demonstrate recent understandings on the formation of intermediate fluorophores and their contribution to the optical properties of CNDs
References
J. Sobhanan, J. V. Rival, A. Anas, E. Sidharth Shibu, Y. Takano, and V. Biju, “Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity,” Adv. Drug Deliv. Rev., vol. 197, p. 114830, 2023, doi: 10.1016/j.addr.2023.114830.
X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, Oct. 2004, doi: 10.1021/ja040082h.
C. Y. Chung et al., “Toxic or not toxic, that is the carbon quantum dot’s question: A comprehensive evaluation with zebrafish embryo, eleutheroembryo, and adult models,” Polymers (Basel)., vol. 13, no. 10, 2021, doi: 10.3390/polym13101598.
X. Yang et al., “Advances, opportunities, and challenge for full-color emissive carbon dots,” Chinese Chem. Lett., vol. 33, no. 2, pp. 613–625, 2022, doi: 10.1016/j.cclet.2021.08.077.
D. Shen, L. Zhu, C. Wu, and S. Gu, “State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots,” Ind. Eng. Chem. Res., vol. 59, no. 51, pp. 22017–22039, 2020, doi: 10.1021/acs.iecr.0c04760.
X.-D. Mai, T. Thi Kim Chi, T.-C. Nguyen, and V.-T. Ta, “Scalable synthesis of highly photoluminescence carbon quantum dots,” Mater. Lett., vol. 268, p. 127595, Jun. 2020, doi: 10.1016/j.matlet.2020.127595.
V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, “Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures,” Chem. Rev., vol. 115, no. 11, pp. 4744–4822, 2015, doi: 10.1021/cr500304f.
M. Fu et al., “Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons,” Nano Lett., vol. 15, no. 9, pp. 6030–6035, 2015, doi: 10.1021/acs.nanolett.5b02215.
L. Wang et al., “Full-color fluorescent carbon quantum dots,” Sci. Adv., vol. 6, no. 40, pp. 1–9, 2020, doi: 10.1126/sciadv.abb6772.
F. Yuan et al., “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs,” Nat. Commun., vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-04635-5.
H. Li et al., “Water-soluble fluorescent carbon quantum dots and photocatalyst design,” Angew. Chemie - Int. Ed., vol. 49, no. 26, pp. 4430–4434, 2010, doi: 10.1002/anie.200906154.
F. Yuan et al., “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs,” Nat. Commun., vol. 9, no. 1, p. 2249, Dec. 2018, doi: 10.1038/s41467-018-04635-5.
Y. Li, H. Shu, X. Niu, and J. Wang, “Electronic and Optical Properties of Edge-Functionalized Graphene Quantum Dots and the Underlying Mechanism,” J. Phys. Chem. C, vol. 119, no. 44, pp. 24950–24957, 2015, doi: 10.1021/acs.jpcc.5b05935.
S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, “Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups,” ACS Nano, vol. 7, no. 2, pp. 1239–1245, 2013, doi: 10.1021/nn304675g.
A. Sciortino, E. Marino, B. Van Dam, P. Schall, M. Cannas, and F. Messina, “Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots,” J. Phys. Chem. Lett., vol. 7, no. 17, pp. 3419–3423, 2016, doi: 10.1021/acs.jpclett.6b01590.
R. Sato, Y. Iso, and T. Isobe, “Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission,” Langmuir, 2019, doi: 10.1021/acs.langmuir.9b02739.
M. J. Krysmann, A. Kelarakis, P. Dallas, and E. P. Giannelis, “Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission,” J. Am. Chem. Soc., vol. 134, no. 2, pp. 747–750, Jan. 2012, doi: 10.1021/ja204661r.
J. Schneider et al., “Molecular fluorescence in citric acid-based carbon dots,” J. Phys. Chem. C, vol. 121, no. 3, pp. 2014–2022, 2017, doi: 10.1021/acs.jpcc.6b12519.
M. Langer et al., “Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations,” Appl. Mater. Today, vol. 22, 2021, doi: 10.1016/j.apmt.2020.100924.
R. Zhao and R. Q. Zhang, “A new insight into π-π Stacking involving remarkable orbital interactions,” Phys. Chem. Chem. Phys., vol. 18, no. 36, pp. 25452–25457, 2016, doi: 10.1039/c6cp05485d.
Y. Song et al., “Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine,” J. Mater. Chem. C, vol. 3, no. 23, pp. 5976–5984, 2015, doi: 10.1039/c5tc00813a.
M. Langer, T. Hrivnák, M. Medved’, and M. Otyepka, “Contribution of the Molecular Fluorophore IPCA to Excitation-Independent Photoluminescence of Carbon Dots,” J. Phys. Chem. C, vol. 125, no. 22, pp. 12140–12148, 2021, doi: 10.1021/acs.jpcc.1c02243.
X. D. Mai et al., “Homogeneous and highly photoluminescent composites based on in-situ formed fluorophores in PVA blends,” Mater. Lett., vol. 319, no. April, p. 132269, 2022, doi: 10.1016/j.matlet.2022.132269.
M. X. Dũng et al., “The thermal preparation of luminescent pmma composite using citric acid and ethylenediamine,” TNU J. Sci. Technol., vol. 227, no. 16, pp. 62–67, Oct. 2022, doi: 10.34238/tnu-jst.6470.
T. H. T. Dang, V. T. Mai, Q. T. Le, N. H. Duong, and X. D. Mai, “Post-decorated surface fluorophores enhance the photoluminescence of carbon quantum dots,” Chem. Phys., vol. 527, Nov. 2019, doi: 10.1016/j.chemphys.2019.110503.
M. Otyepka, M. Langer, M. Paloncýová, and M. Medved’, “Molecular fluorophores self-organize into c-dot seeds and incorporate into c-dot structures,” J. Phys. Chem. Lett., vol. 11, no. 19, pp. 8252–8258, 2020, doi: 10.1021/acs.jpclett.0c01873.
P. Duan, B. Zhi, L. Coburn, C. L. Haynes, and K. Schmidt-Rohr, “A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solid-state nuclear magnetic resonance,” Magn. Reson. Chem., vol. 58, no. 11, pp. 1130–1138, 2020, doi: 10.1002/mrc.4985.
X. Mai, Y. T. H. Phan, and V. Nguyen, “Excitation-Independent Emission of Carbon Quantum Dot Solids,” Adv. Mater. Sci. Eng., vol. 2020, pp. 1–5, Dec. 2020, doi: 10.1155/2020/9643168.
M. Van Tuan, L. T. Phuong, V. A. Duc, N. X. Bach, and M. X. Dung, “Enhanced energy transfer in carbon quantum dot solids,” TNU J. Sci. Technol., vol. 225, no. 06, pp. 419–423, 2020.
C. J. Reckmeier et al., “Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots,” Chem. Mater., vol. 29, no. 24, pp. 10352–10361, 2017, doi: 10.1021/acs.chemmater.7b03344.
A. Cappai, C. Melis, L. Stagi, P. C. Ricci, F. Mocci, and C. M. Carbonaro, “Insight into the Molecular Model in Carbon Dots through Experimental and Theoretical Analysis of Citrazinic Acid in Aqueous Solution,” J. Phys. Chem. C, vol. 125, no. 8, pp. 4836–4845, 2021, doi: 10.1021/acs.jpcc.0c10916.
Y. Song et al., “Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine,” J. Mater. Chem. C, vol. 3, no. 23, pp. 5976–5984, 2015, doi: 10.1039/c5tc00813a.
S. Zhu et al., “Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging,” Angew. Chemie - Int. Ed., vol. 52, no. 14, pp. 3953–3957, 2013, doi: 10.1002/anie.201300519.
L. Shi et al., “Carbon dots with high fluorescence quantum yield: The fluorescence originates from organic fluorophores,” Nanoscale, vol. 8, no. 30, pp. 14374–14378, 2016, doi: 10.1039/c6nr00451b.
W. Kasprzyk, S. Bednarz, P. Zmudzki, M. Galica, and D. Bogdał, “Novel efficient fluorophores synthesized from citric acid,” RSC Adv., vol. 5, no. 44, pp. 34795–34799, 2015, doi: 10.1039/c5ra03226a.
L. Vallan et al., “Supramolecular-Enhanced Charge Transfer within Entangled Polyamide Chains as the Origin of the Universal Blue Fluorescence of Polymer Carbon Dots,” J. Am. Chem. Soc., vol. 140, no. 40, pp. 12862–12869, 2018, doi: 10.1021/jacs.8b06051.
W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N. V. Bashmakova, and D. Bogdał, “Luminescence phenomena of carbon dots derived from citric acid and urea-a molecular insight,” Nanoscale, vol. 10, no. 29, pp. 13889–13894, 2018, doi: 10.1039/c8nr03602k.
V. Strauss, H. Wang, S. Delacroix, M. Ledendecker, and P. Wessig, “Carbon nanodots revised: The thermal citric acid/urea reaction,” Chem. Sci., vol. 11, no. 31, pp. 8256–8266, 2020, doi: 10.1039/d0sc01605e.
X. Miao et al., “Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization,” Adv. Mater., vol. 30, no. 1, pp. 1–8, 2018, doi: 10.1002/adma.201704740.
X. Li, S. Zhang, S. A. Kulinich, Y. Liu, and H. Zeng, “Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection,” Sci. Rep., vol. 4, pp. 1–8, 2014, doi: 10.1038/srep04976.
T. Hu et al., “Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes,” Nanoscale Adv., vol. 1, no. 4, pp. 1413–1420, 2019, doi: 10.1039/c8na00329g.
S. Sun, L. Zhang, K. Jiang, A. Wu, and H. Lin, “Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents,” Chem. Mater., vol. 28, no. 23, pp. 8659–8668, 2016, doi: 10.1021/acs.chemmater.6b03695.
K. Holá et al., “Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots,” ACS Nano, vol. 11, no. 12, pp. 12402–12410, 2017, doi: 10.1021/acsnano.7b06399.
H. Ding, J. S. Wei, N. Zhong, Q. Y. Gao, and H. M. Xiong, “Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging,” Langmuir, vol. 33, no. 44, pp. 12635–12642, 2017, doi: 10.1021/acs.langmuir.7b02385.
A. Lv et al., “Long-wavelength (red to near-infrared) emissive carbon dots: Key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics,” Chinese Chem. Lett., vol. 32, no. 12, pp. 3653–3664, 2021, doi: 10.1016/j.cclet.2021.06.020.
Y. Reva et al., “Understanding the Visible Absorption of Electron Accepting and Donating CNDs,” Small, vol. 2207238, pp. 1–10, 2023, doi: 10.1002/smll.202207238.
B. Wang et al., “Electron–phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots,” Light Sci. Appl., vol. 11, no. 1, 2022, doi: 10.1038/s41377-022-00865-x.
C. Ji et al., “Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors,” Carbon N. Y., vol. 192, pp. 198–208, Jun. 2022, doi: 10.1016/j.carbon.2022.02.054.
Q. Zhang, R. Wang, B. Feng, X. Zhong, and K. (Ken) Ostrikov, “Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation,” Nat. Commun., vol. 12, no. 1, pp. 1–13, 2021, doi: 10.1038/s41467-021-27071-4.
P. Li et al., “Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system,” Light Sci. Appl., vol. 11, no. 1, pp. 1–11, 2022, doi: 10.1038/s41377-022-00984-5.
N. Soni et al., “Absorption and emission of light in red emissive carbon nanodots,” Chem. Sci., vol. 12, no. 10, pp. 3615–3626, 2021, doi: 10.1039/d0sc05879c.
S. Yang et al., “C3N—A 2D Crystalline, Hole-Free, Tunable-Narrow-Bandgap Semiconductor with Ferromagnetic Properties,” Adv. Mater., vol. 29, no. 16, pp. 1–7, 2017, doi: 10.1002/adma.201605625.
X.-D. Mai, S.-H. Nguyen, D.-L. Tran, V.-Q. Nguyen, and V.-H. Nguyen, “Single-chip horticultural LEDs enabled by greenly synthesized red-emitting carbon quantum dots,” Mater. Lett., vol. 341, no. March, p. 134195, 2023, doi: 10.1016/j.matlet.2023.134195.
W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu, and B. Yang, “Biomass-Derived Carbon Dots and Their Applications,” Energy Environ. Mater., vol. 2, no. 3, pp. 172–192, 2019, doi: 10.1002/eem2.12038.
P. Khare, A. Bhati, S. R. Anand, Gunture, and S. K. Sonkar, “Brightly Fluorescent Zinc-Doped Red-Emitting Carbon Dots for the Sunlight-Induced Photoreduction of Cr(VI) to Cr(III),” ACS Omega, vol. 3, no. 5, pp. 5187–5194, 2018, doi: 10.1021/acsomega.8b00047.
F. Qin et al., “Searching for the true origin of the red fluorescence of leaf-derived carbon dots,” Phys. Chem. Chem. Phys., vol. 25, no. 4, pp. 2762–2769, 2023, doi: 10.1039/D2CP05130C.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2023 Duy-Khanh Nguyen, Thanh-Son Le, Quang-Trung Le, Xuan-Dung Mai
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.