Stepwise grafting polyethyleneimine onto silica surface for Cu(II) removal
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.3.20-26- Keywords:
- Polyethyleneimine
- PEI
- silica
- clean water
- adsorption
Abstract
Polyethyleneimine (PEI) is a novel polymer that contains multiple amine groups that are suitable for chelation with many heavy metal ions (HMI). Anchoring PEI onto the surface of a solid substrate has been widely adopted to develop adsorbent materials with the hope of combining the HMI chelating ability of PEI with the heterogeneity of the substrate. Herein, the preparation of PEI grafted SiO2 (PEI/SiO2) has been demonstrated by a stepwise method in which SiO2 nanoparticles were functionalized with 3-glycidoxypropyltrimethoxysilane (KH560) followed by refluxing with PEI. The method could provide PEI/SiO2 material with 23.4% of PEI by weight. Studying the adsorption properties of PEI/SiO2 with Cu(II) revealed that the adsorption of Cu(II) ions on PEI/SiO2 followed Langmuir and Dubinin-Radushkevich models and included both chemisorption and physisorption. The adsorption capacity was about 25.3-27.3 mg/g. The stepwise method demonstrated in this study may be adopted to fabricated PEI based materials for HMI removal.
References
[1] N. A. A. Qasem, R. H. Mohammed, and D. U. Lawal, “Removal of heavy metal ions from wastewater: A comprehensive and critical review,” Npj Clean Water, vol. 4, no. 1, p. 36, Jul. 2021, doi: 10.1038/s41545-021-00127-0.
[2] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, “Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic,” Front. Pharmacol., vol. 12, Apr. 2021, Art. No. 643972, doi: 10.3389/fphar.2021.643972.
[3] D. J. Fitzgerald, “Safety guidelines for copper in water,” Am. J. Clin. Nutr., vol. 67, no. 5, pp. 1098S–1102S, May 1998, doi: 10.1093/ajcn/67.5.1098s.
[4] A. Gul, A. Ma’amor, N. G. Khaligh, and N. Muhd Julkapli, “Recent advancements in the applications of activated carbon for the heavy metals and dyes removal,” Chem. Eng. Res. Des., vol. 186, pp. 276–299, Oct. 2022, doi: 10.1016/j.cherd.2022.07.051.
[5] K. Gupta, P. Joshi, R. Gusain, and O. P. Khatri, “Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials,” Coord. Chem. Rev., vol. 445, Oct. 2021, Art. no. 214100, doi: 10.1016/j.ccr.2021.214100.
[6] Z. M. Ayalew, X. Guo, and X. Zhang, “Synthesis and application of polyethyleneimine (PEI)‐based composite/nanocomposite material for heavy metals removal from wastewater: A critical review,” J. Hazard. Mater. Adv., vol. 8, Nov. 2022, Art. no. 100158, doi: 10.1016/j.hazadv.2022.100158.
[7] P. Sharma, J. Prakash, and R. Kaushal, “Eco-friendly synthesis of amino and carboxyl-functionalized silica nanoparticles for enhanced adsorption of water pollutants,” Hybrid Adv., vol. 6, Aug. 2024, Art. no. 100209, doi: 10.1016/j.hybadv.2024.100209.
[8] A. Alfawaz, A. Alsalme, A. Alkathiri, and A. Alswieleh, “Surface functionalization of mesoporous silica nanoparticles with brønsted acids as a catalyst for esterificatsion reaction,” J. King Saud Univ. - Sci., vol. 34, no. 5, Jul. 2022, Art. no. 102106, doi: 10.1016/j.jksus.2022.102106.
[9] J. Lan, B. Wang, and B. Gong, “Polyethyleneimine modified activated carbon for high-efficiency adsorption of copper ion from simulated wastewater,” Water Sci. Technol., vol. 86, no. 9, pp. 2465–2481, Nov. 2022, doi: 10.2166/wst.2022.345.
[10] F. AN and B. GAO, “Chelating adsorption properties of PEI/SiO2 for plumbum ion,” J. Hazard. Mater., vol. 145, no. 3, pp. 495–500, Jul. 2007, doi: 10.1016/j.jhazmat.2006.11.051.
[11] W. Nowicki, “Structural studies of complexation of Cu(II) with aminosilane-modified silica surface in heterogeneous system in a wide range of pH,” Appl. Surf. Sci., vol. 469, pp. 566–572, Mar. 2019, doi: 10.1016/j.apsusc.2018.11.066.
[12] O. Plohl, M. Finšgar, S. Gyergyek, U. Ajdnik, I. Ban, and L. F. Zemljič, “Efficient copper removal from an aqueous anvironment using a novel and hybrid nanoadsorbent based on derived-polyethyleneimine linked to silica magnetic nanocomposites,” Nanomaterials, vol. 9, no. 2, Feb. 2019, Art. no. p. 209, doi: 10.3390/nano9020209.
[13] D. Guspita and A. Ulianas, “Optimization of complex NH3 with Cu2+ ions to determine levels of ammonia by UV-Vis spectrophotometer,” J. Phys. Conf. Ser., vol. 1481, no. 1, Mar. 2020, Art. no. 209, doi: 10.1088/1742-6596/1481/1/012040.
[14] D. A.O, “Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk,” IOSR J. Appl. Chem., vol. 3, no. 1, pp. 38–45, Jan. 2012, doi: 10.9790/5736-0313845.
[15] L. Hu, Z. Pu, Y. Tian, X. Zheng, J. Cheng, and J. Zhong, “Preparation and properties of fluorinated silicon two-component polyurethane hydrophobic coatings,” Polym. Int., vol. 69, no. 5, pp. 448–456, Jan. 2020, doi: 10.1002/pi.5973.
[16] H. Shi, J. Yang, Z. Ahmad, H. Zhang, and J. Chen, “Co-grafting of polyethyleneimine on mesocellular silica foam for highly efficient CO2 capture,” Sep. Purif. Technol., vol. 325, Jul. 2023, Art. no. 124608, doi: 10.1016/j.seppur.2023.124608.
[17] K. Choi et al., “Chromium removal from aqueous solution by a PEI-silica nanocomposite,” Sci. Rep., vol. 8, Jan. 2018, Art. no. 1438, doi: 10.1038/s41598-018-20017-9.
[18] K. Chen, T. Zhang, X. Chen, Y. He, and X. Liang, “Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China,” Pet. Explor. Dev., vol. 45, no. 3, pp. 412–421, Jun. 2018, doi: 10.1016/S1876-3804(18)30046-6.
[19] A. Shahbazi, H. Younesi, and A. Badiei, “Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column,” Chem. Eng. J., vol. 168, no. 2, pp. 505–518, Apr. 2011, doi: 10.1016/j.cej.2010.11.053.
[20] J. I. Lachowicz et al., “Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent,” J. Environ. Chem. Eng., vol. 7, no. 4, Aug. 2019, Art. no. 103205, doi: 10.1016/j.jece.2019.103205.
[21] J. Dong, Y. Du, R. Duyu, Y. Shang, S. Zhang, and R. Han, “Adsorption of copper ion from solution by polyethylenimine modified wheat straw,” Bioresour. Technol. Reports, vol. 6, pp. 96–102, Jun. 2019, doi: 10.1016/j.biteb.2019.02.011.
[22] J. Wei, S. Chen, Y. Li, Z. He, L. Geng, and L. Liao, “Aqueous Cu(II) ion adsorption by amino-functionalized mesoporous silica KIT-6,” RSC Adv., vol. 10, no. 35, pp. 20504–20514, Jan. 2020, doi: 10.1039/d0ra03051a.
[23] D. Le and A. Chu, “Study on the adsorption L- and D- proline on MKN-MWCNT-P5000 carbon nanotubes from aqueous solutions,” HPU2. Nat. Sci. Tech., vol. 03, no. 02, pp. 50–58, Aug. 2024, doi: 10.56764/hpu2.jos.2024.3.2.50-58.
[24] P. Senthil Kumar, S. Ramalingam, R. V. Abhinaya, K. V. Thiruvengadaravi, P. Baskaralingam, and S. Sivanesan, “Lead(II) adsorption onto sulphuric acid treated cashew nut shell,” Sep. Sci. Technol., vol. 46, no. 15, pp. 2436–2449, Oct. 2011, doi: 10.1080/01496395.2011.590174.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Mahmoud Elsayed Hafez, Thanh-Thuy Mai Thi, Van-Tuan Mai, Thuy-Tien Do, Thu-Huyen Dang Thi, Phuong-Uyen Pham, Hai-Yen Vu Thi, Quynh-Mai Le, The-Duyen Nguyen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.