Molecular docking and ADMET studies of soluble epoxide hydrolase inhibitors from the leaves of Paederia foetida L.
DOI:
https://doi.org/10.56764/hpu2.jos.2022.2.1.32-43Abstract
Cardiovascular diseases are one of the leading cause of mortality and morbidity worldwide. Although many efforts have been made in the drug discovery and development process through decades, the number of approved drugs has been declining. In the recent years, soluble epoxide hydrolase (sEH) has been considered as promising target for drug development since inhibiting sEH function would prevent the formation of arterial thrombosis. Paederia foetida L. is a folk medicine distributed commonly in Vietnam which is well known for its uses in the treatment of various diseases. This study conducted in silico assessment of 21 isolated compounds from leaves of Paederia foetida L. against sEH enzyme for potential inhibition activity. Obtained results demonstrated that compound 4 and 9 could be potent, safe and novel inhibitors based on docking conformation and druglikeness properties.
References
H. Savoji, M. H. Mohammadi, N. Rafatian, M. K. Toroghi, E. Y. Wang, Y. Zhao, A. Korolj, S. Ahadian, M. Radisic. Cardiovascular disease models: A game changing paradigm in drug discovery and screening, Biomaterials, 2019, 198, 3-26.
T. N. Durrant, I. Hers. PI3K inhibitors in thrombosis and cardiovascular disease, Clinical and Translational Medicine, 2020, 9.
O. Jung, R. P. Brandes, I.-H. Kim, F. Schweda, R. Schmidt, B. D. Hammock, R. Busse, I. Fleming. Soluble Epoxide Hydrolase Is a Main Effector of Angiotensin II–Induced Hypertension, Hypertension, 2005, 45, 759-765.
N. Chiamvimonvat, C.-M. Ho, H.-J. Tsai, B. D. Hammock. The Soluble Epoxide Hydrolase as a Pharmaceutical Target for Hypertension, J. Cardiovasc. Pharmacol., 2007, 50, 225-237.
H. Huang, J. Weng, M.-H. Wang. EETs/sEH in diabetes and obesity-induced cardiovascular diseases, Prostaglandins Other Lipid Mediat., 2016, 125, 80-89.
Y. K. Han, J. S. Lee, S. Y. Yang, K. Y. Lee, Y. H. Kim. In Vitro and In Silico Studies of Soluble Epoxide Hydrolase Inhibitors from the Roots of Lycopus lucidus, Plants, 2021, 10.
D. C. Tan, K. I. Idris, N. K. Kassim, P. C. Lim, I. Safinar Ismail, M. Hamid, R. C. Ng. Comparative study of the antidiabetic potential of Paederia foetida twig extracts and compounds from two different locations in Malaysia, Pharm. Biol., 2019, 57, 345-354.
A. Ahmed. Thrombolytic, Cytotoxic and Antidiabetic Effects of Paederia foetida L. Leaf Extract, Br. J. Med. Med. Res., 2014, 4, 1244-1256.
L. Wang, Y. Jiang, T. Han, C. Zheng, L. Qin. A Phytochemical, Pharmacological and Clinical Profile of Paederia foetida and P. scandens, Nat. Prod. Commun., 2014, 9.
N. Tripathi, S. Paliwal, S. Sharma, K. Verma, R. Gururani, A. Tiwari, A. Verma, M. Chauhan, A. Singh, D. Kumar, A. Pant. Discovery of Novel Soluble Epoxide Hydrolase Inhibitors as Potent Vasodilators, Sci. Rep., 2018, 8.
S. R. Hynniewta, Y. Kumar, Herbal remedies among the Khasi traditional healers and village folks in Meghalaya, 2008.
Q. M. Pham, L. Q. Pham. Virtual Screening Stategies in Drug Discovery – a Brief Overview, Vietnam Journal of Science and Technology, 2021, 59.
P. M. Quan, H. B. Q. Anh, N. T. N. Hang, D. H. Toan, D. V. Ha, P. Q. Long. Marine derivatives prevent E6 protein of HPV: An in silico study for drug development, Regional Studies in Marine Science, 2022, 56.
S. Agarwal, R. Mehrotra, An overview of Molecular Docking, 2016.
R. K. Thalji, J. J. McAtee, S. Belyanskaya, M. Brandt, G. D. Brown, M. H. Costell, Y. Ding, J. W. Dodson, S. H. Eisennagel, R. E. Fries, J. W. Gross, M. R. Harpel, D. A. Holt, D. I. Israel, L. J. Jolivette, D. Krosky, H. Li, Q. Lu, T. Mandichak, T. Roethke, C. G. Schnackenberg, B. Schwartz, L. M. Shewchuk, W. Xie, D. J. Behm, S. A. Douglas, A. L. Shaw, J. P. Marino. Discovery of 1-(1,3,5-triazin-2-yl)piperidine-4-carboxamides as inhibitors of soluble epoxide hydrolase, Bioorg. Med. Chem. Lett., 2013, 23, 3584-3588.
G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 2009, 30, 2785-2791.
Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.3r1. 2010.
A.-R. Allouche. Gabedit-A graphical user interface for computational chemistry softwares, J. Comput. Chem., 2011, 32, 174-182.
Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v21.1.0.20298, San Diego: Dassault Systèmes, 2021.
R. A. Laskowski, M. B. Swindells. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery, J. Chem. Inf. Model., 2011, 51, 2778-2786.
S. R.-. Maestro. Schrödinger Release 2019-4: Maestro, Schrödinger, LLC, New York, NY, 2019, 2019.
L. T. T. Anh, N. T. Son, N. Van Tuyen, P. T. Thuy, P. M. Quan, N. T. T. Ha, N. T. Tra. Antioxidative and α-glucosidase inhibitory constituents of Polyscias guilfoylei: experimental and computational assessments, Mol. Divers., 2021.
S. T. Ngo, H. M. Nguyen, L. T. Thuy Huong, P. M. Quan, V. K. Truong, N. T. Tung, V. V. Vu. Assessing potential inhibitors of SARS-CoV-2 main protease from available drugs using free energy perturbation simulations, RSC Advances, 2020, 10, 40284-40290.