Genetic diversity of Shan tea (Camellia sinensis var. assamica) from Cao Son Commune, Lao Cai province using RAPD-PCR
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.03.72-79Abstract
Shan tea (Camellia sinensis var. assamica) represents a valuable indigenous genetic resource predominantly distributed in the mountainous regions of Northwest Vietnam, especially in Lao Cai province. To assess the genetic diversity of these tea populations, this study employed the Random Amplified Polymorphic DNA (RAPD)-PCR technique using six specific primers to analyze 16 leaf samples collected from Muong Khuong district. A total of 38 DNA bands were amplified, of which 32 were polymorphic, demonstrating the high effectiveness of the RAPD primer. The genetic similarity coefficient ranged from 0.62 to 0.92, suggesting a relatively wide genetic variability among the Shan tea individuals. Cluster analysis grouped the samples into four major genotypic clusters. These findings provide important molecular data to support broader conservation planning and guide selective breeding programs aimed at improving tea quality and climate resilience in indigenous Shan tea populations.
References
[1] X.-H. Meng, N. Li, H.-T. Zhu, D. Wang, C.-R. Yang, and Y.-J. Zhang, “Plant resources, chemical constituents, and bioactivities of tea plants from the genus Camellia section Thea,” J. Agric. Food Chem., vol. 67, no. 19, pp. 5318–5349, Nov. 2018, doi: 10.1021/acs.jafc.8b05037.
[2] S. Samanta, “Potential bioactive components and health promotional benefits of tea (Camellia sinensis),” J. Am. Nutr. Assoc., vol. 41, no. 1, pp. 1–29, Nov. 2020, doi: 10.1080/07315724.2020.1827082.
[3] N. T. Do, Flora of Vietnam, vol. 8. Hanoi, Vietnam: Science and Technology Publishing House, 2007.
[4] P. H. Ho, Vietnamese Plants and Trees, vol. 3, p. 495. Ho Chi Minh, Vietnam: Young Publishing House, 2000.
[5] N. T. Ban, Checklist of Plant Species of Vietnam, vol. 3. Hanoi, Vietnam: Agriculture Publishing House (in Vietnamese), 2005.
[6] W. Kong et al., “Genomic analysis of 1,325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement,” Nat. Genet., vol. 57, no. 4, pp. 997–1007, 2025, doi: 10.1038/s41588-025-02135-z.
[7] S. Tibpromma et al., “Climate-fungal pathogen modeling predicts loss of up to one-third of tea growing areas,” Front. Cell. Infect. Microbiol., vol. 11, Apr. 2021, doi: 10.3389/fcimb.2021.610567.
[8] M.-M. Li et al., “Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica),” Plant Divers., vol. 46, no. 2, pp. 229–237, 2024, doi: 10.1016/j.pld.2023.06.002.
[9] D. Li et al., “Genetic diversity and population structure of wild ancient Camellia tetracocca in Pu’an, Guizhou, China,” Plants, vol. 14, no. 11, p. 1709, Jun. 2025, doi: 10.3390/plants14111709.
[10] S. Liu et al., “Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research,” BMC Genomics, vol. 20, no. 1, p. 935, 2019, doi: 10.1186/s12864-019-6347-0.
[11] Y. Zhao, R. Wang, Q. Liu, X. Dong, and D.-G. Zhao, “Genetic diversity of ancient Camellia sinensis (L.) O. Kuntze in Sandu County of Guizhou Province in China,” Diversity, vol. 13, no. 6, p. 276, 2021, doi: 10.3390/d13060276.
[12] Y. An et al., “Revealing distinctions in genetic diversity and adaptive evolution between two varieties of Camellia sinensis by whole-genome resequencing,” Front. Plant Sci., vol. 11, Nov. 2020, doi: 10.3389/fpls.2020.603819.
[13] S. Sharma et al., “Evaluation of genetic diversity and population structure in elite south Indian tea [Camellia sinensis (L.) Kuntze] using RAPD and ISSR markers,” Genet. Resour. Crop Evol., vol. 70, pp. 381–398, 2023, doi: 10.1007/s10722-022-01433-3.
[14] L. S. Samarina et al., “Genetic diversity and genome size variability in the Russian genebank collection of tea plant [Camellia sinensis (L.) O. Kuntze],” Front. Plant Sci., vol. 12, Feb. 2022, doi: 10.3389/fpls.2021.800141.
[15] K. N. Babu et al., “Random amplified polymorphic DNA (RAPD) and derived techniques,” Methods Mol. Biol., vol. 2222, pp. 219–247, 2021, doi: 10.1007/978-1-0716-0997-2_13.
[16] T. K. Mondal, “Molecular markers,” in Tea: Genome and Genetics. Singapore: Springer, 2020, doi: 10.1007/978-981-15-8868-6_6.
[17] A. Naik et al., “Assessment of genetic diversity in Costus pictus accessions based on RAPD and ISSR markers,” 3 Biotech, vol. 7, p. 70, 2017, doi: : 10.1007/s13205-017-0667-z.
[18] S. O. Rogers and A. J. Bendich, “Extraction of DNA from plant tissues,” in Plant Molecular Biology Manual, S. B. Gelvin, R. A. Schilperoort, and D. P. S. Verma, Eds. Dordrecht: Springer, 1989, pp. 73–83, doi: 10.1007/978-94-009-0951-9_6.
[19] F. J. Rohlf, NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. New York, NY, USA: Exeter Publishing, 1988, doi: 10.1093/syszoo/37.1.91.
[20] M. Huseynov, Z. Suleymanova, J. Ojaghi, and A. Mammadov, “Characterization and phylogeny analysis of Azerbaijan tea (Camellia sinensis L.) genotypes by molecular markers,” Cytol. Genet., vol. 56, no. 3, pp. 285–291, 2022, doi: 10.3103/s0095452722030057.
[21] L. Chen, Q.-K. Gao, D.-M. Chen, and C.-J. Xu, “The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in a tea germplasm repository,” Biodivers. Conserv., vol. 14, no. 6, pp. 1433–1444, 2005, doi: 10.1007/s10531-004-9787-y.
[22] B. Martono and S. Syafaruddin, “Genetic variability of 21 tea genotypes [Camellia sinensis (L.) O. Kuntze] based on RAPD markers,” J. Teknol. Ind. Pertan., vol. 5, no. 2, pp. 77–86, 2018, doi: 10.21082/JTIDP.V5N2.2018.P77-86.
[23] C. Xi, Q. Tang, Y. Wu, J. Xu, H. Chen, and Q. Wu, “Genetic diversity and relationship of 30 tea plant germplasms in Sichuan revealed by SRAP marker,” J. Tea Sci., no. 2, 2013, doi: 10.3969/j.issn.1001-3601.2013.02.002.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Thuy-Lien Bui, Thi-Thuong Ngo, Xuan-Phong Ong, Van-Thiep Nguyen, Thi-Xuyen Ngo, Viet-Hong La

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





