The synthesis of \(\text{TiO}_2\) nanosheets and their outperformance in the photocatalytic degradation of methylene blue
DOI:
https://doi.org/10.56764/hpu2.jos.2025.4.03.26-33Abstract
TiO2 nanocrystals have been deployed as photocatalysts for the degradation of organic pollutants in wastewater due to their high chemical resistance and environmental friendliness. Because the reaction takes place on the catalyst surface, the crystal phase and the morphology of TiO2 nanocrystals are important factors governing the catalytic activity. Herein, we prepared TiO2 nanosheets by hydrothermal treatment of titanium (IV) butoxide in the presence of hydrofluoric acid. The crystallinity and the morphology of TiO2 nanosheets were characterized by X-ray diffraction and scanning electron microscope (SEM), respectively. The photocatalytic activity of TiO2 nanosheets was compared with that of commercially available TiO2 nanoparticles (Degussa P25) using the degradation reaction of methylene blue (MB) in water under ultraviolet light at 365 nm. The X-ray diffraction and SEM characterizations indicated that anatase TiO2 nanosheets with enriched {001} facets were successfully obtained. The MB degradation assay revealed that the decolorization of MB on TiO2 nanosheets was 1.85 times faster than that on the TiO2 nanoparticles counterpart. The synthesis and excellent photocatalytic activity of TiO2 nanosheets demonstrated in this paper may promote the development of catalysts for removing organic pollutants in wastewater.
References
[1] M. F. Hanafi and N. Sapawe, “A review on the current techniques and technologies of organic pollutants removal from water/wastewater,” Mater. Today Proc., vol. 31, no. 2020, pp. A158–A165, Feb. 2021, doi: 10.1016/j.matpr.2021.01.265.
[2] A. A. Najim, A. Y. Radeef, and Z. H. Jabbar, “Recent trends in physio-chemo technologies and their role in dyes removal: Effectiveness, benefits, and limitations,” Chem. Eng. Res. Des., vol. 219, pp. 198–221, Jun., 2025, doi: 10.1016/j.cherd.2025.06.005.
[3] N. T. K. Trinh et al., “One-step synthesis of activated carbon from surgacane bagasse,” TNU J. Sci. Technol., vol. 226, no. 11, pp. 47–52, Jul. 2021, doi: 10.34238/tnu-jst.4479.
[4] N. T. Huyen, M. X. Dung, N. T. Duyen, and D. T. Tien, “Enhance the Cu(II) adsorption by cross-linking PEI on the surface of SiO2,” TNU J. Sci. Technol., vol. 229, no. 10, pp. 68–75, May, 2024, doi: 10.34238/tnu-jst.9855.
[5] P. T. T. Thanh, L. Q. Mai, and M. X. Dung, “Conflicting effects of PEI grafting on the adsorption properties of activated carbon,” TNU J. Sci. Technol., vol. 229, no. 10, pp. 18–25, May 2024, doi: 10.34238/tnu-jst.9758.
[6] M. Ahtasham Iqbal et al., “Advanced photocatalysis as a viable and sustainable wastewater treatment process: A comprehensive review,” Environ. Res., vol. 253, May 2024, Art. no. 118947, doi: 10.1016/j.envres.2024.118947.
[7] V. C. Manh et al., “Study on coating of TiO2 nanotubes on microporous Ti surfaces for biomedical applications,” Key Eng. Mater., vol. 1002, pp. 45–53, Dec. 2024, doi: 10.4028/p-xqj5HI.
[8] T. Tung Nguyen, X. D. Mai, and N. H. Duong, “Simultaneous synthesis of anatase colloidal and multiple-branched rutile TiO2 nanostructures,” Bull. Korean Chem. Soc., vol. 38, no. 3, pp. 401–405, Jan. 2017, doi: 10.1002/bkcs.11101.
[9] D. R. Eddy et al., “Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity,” Nanomaterials, vol. 13, no. 4, Feb. 2023, Art. no. 704, doi: 10.3390/nano13040704.
[10] H. D. Ngoc, D. M. Xuan, and T. M. Van, “Effect of pH on the formation of amorphous TiO2 complexes and TiO2 anatase during the pyrolysis of an aqueous TiCl4 solution,” Catalysts, vol. 10, no. 10, Oct. 2020, Art. no. 1187, doi: 10.3390/catal10101187.
[11] Y. Kowaka et al., “Development of TiO2 nanosheets with high dye degradation performance by regulating crystal growth,” Materials, vol. 16, no. 3, Jan. 2023, Art. no. 1229, doi: 10.3390/ma16031229.
[12] B. Li et al., “Enhanced visible-driven photocatalysis in black TiO2 nanosheets with co-exposed {001} and {101} planes,” Surfaces and Interfaces, vol. 59, Jan. 2025, Art. no. 105930, doi: 10.1016/j.surfin.2025.105930.
[13] S. P. Sabino et al., “Investigation of the photocatalytic activity of various TiO2 nanoparticles in the contaminant remediation,” J. Environ. Chem. Eng., vol. 8, Jan. 2025, Art. no. 100856, doi: 10.1016/j.nxmate.2025.100856.
[14] N. H. Duong, V. T. Mai, and X. D. Mai, “Charge photogeneration and transfer in polyaniline/titanium dioxide heterostructure,” Catalysts, vol. 14, no. 9, Sep. 2024, Art. no. 585, doi: 10.3390/catal14090585.
[15] X. Zhou et al., “The effect of surface heterojunction between (001) and (101) facets on photocatalytic performance of anatase TiO2,” Mater. Lett., vol. 205, pp. 173–177, Jun. 2017, doi: 10.1016/j.matlet.2017.06.095.
[16] Y. Gao et al., “Unravelling the origin of facet-dependent photocatalytic H2O2 production over anatase TiO2,” Mater. Today Energy, vol. 40, Dec. 2023, Art. no. 101483, doi: 10.1016/j.mtener.2023.101483.
[17] S. Odabasi Lee, S. K. Lakhera, and K. Yong, “Strategies to enhance interfacial spatial charge separation for high-efficiency photocatalytic overall water-splitting: A review,” Adv. Energy Sustain. Res., vol. 4, no. 12, Sep. 2023, Art. no. 2300130, doi: 10.1002/aesr.202300130.
[18] R. Liu et al., “Fabrication of {001}-facet enriched anatase TiO2/TiOF2 heterostructures with controllable morphology for enhanced photocatalytic activity,” Mater. Today Commun., vol. 26, Jan. 2021, Art. no. 102060, doi: 10.1016/j.mtcomm.2021.102060.
[19] K. Chen et al., “Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets,” Ceram. Int., vol. 40, no. 10, pp. 16817–16823, Jul. 2014, doi: 10.1016/j.ceramint.2014.07.050.
[20] F. Wu, L. Fan, Y. Chen, S. Chen, J. Shen, and P. Liu, “Crystallization of 2D TiO2 nanosheets via oriented attachment of 1d coordination polymer,” Nano Lett., vol. 25, no. 1, pp. 56–62, Oct. 2024, doi: 10.1021/acs.nanolett.4c04084.
[21] X. Han, Q. Kuang, M. Jin, Z. Xie, and L. Zheng, “Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties,” J. Am. Chem. Soc., vol. 131, no. 9, pp. 3152–3153, Mar. 2009, doi: 10.1021/ja8092373.
[22] H. G. Yang et al., “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature, vol. 453, no. 7195, pp. 638–641, May 2008, doi: 10.1038/nature06964.
[23] S. P. Sabino, E. B. Santos, B. I. M. Santos, and M. Goncalves, “Investigation of the photocatalytic activity of various TiO2 nanoparticles in the contaminant remediation,” Next Mater., vol. 8, Jun. 2025, Art. no. 100856, doi: 10.1016/j.nxmate.2025.100856.
[24] K. Hayashi et al., “Enhanced antibacterial property of facet-engineered TiO2 nanosheet in presence and absence of ultraviolet irradiation,” Materials., vol. 13, no. 1, Dec. 2019, Art. no. 78, doi: 10.3390/ma13010078.
[25] G. B. Yitagesu, D. T. Leku, A. M. Seyume, and G. A. Workneh, “Biosynthesis of TiO2/CuO and its application for the photocatalytic removal of the methylene blue dye,” ACS Omega, vol. 9, no. 40, pp. 41301–41313, Sep. 2024, doi: 10.1021/acsomega.4c03472.
[26] Z. Liu, X. Liu, Q. Lu, Q. Wang, and Z. Ma, “TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity,” J. Taiwan Inst. Chem. Eng., vol. 96, pp. 214–222, Nov. 2018, doi: 10.1016/j.jtice.2018.11.013.
[27] G. Zerjav, K. Zizek, J. Zavasnik, and A. Pintar, “Brookite vs. rutile vs. anatase: What’s behind their various photocatalytic activities?,” J. Environ. Chem. Eng., vol. 10, no. 3, Apr. 2022, Art. no. 107722, doi: 10.1016/j.jece.2022.107722.
[28] F. Bertolotti et al., “Structure, morphology, and faceting of TiO2 photocatalysts by the Debye scattering equation method. The P25 and P90 cases of study,” Nanomaterials, vol. 10, no. 4, Apr. 2020, Art. no. 743, doi: 10.3390/nano10040743.
[29] A. Trenczek-Zajac et al., “Scavenger-supported photocatalytic evidence of an extended type I electronic structure of the TiO2@Fe2O3 interface,” ACS Appl. Mater. Interfaces, vol. 14, no. 33, pp. 38255–38269, Aug. 2022, doi: 10.1021/acsami.2c06404.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2025 Duc-Nam Cao, Ba-Trang Doan, Van-Tuan Mai, Dinh-Lam Nguyen, Duy-Khanh Nguyen, Minh-Quy Bui, Xuan-Dung Mai

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





