The one-pot fabrication of green-emitting composites based on PMMA
DOI:
https://doi.org/10.56764/hpu2.jos.2024.3.3.35-42- Keywords:
- PMMA
- composite
- photoluminescent
- fluorophore
- one-pot
Abstract
Photoluminescent composites consisting of a photoluminescent material dispersed in a suitable matrix have been applied in many applications, such as light-emitting diodes, solar concentrators, and anti-counterfeiting inks. The traditional method for the fabrication of composites by blending an as-synthesized photoluminescent material and a matrix is very challenging as it is difficult to obtain homogeneous composites. In this study, we have demonstrated a one-step method to prepare homogeneous composites by inducing the formation of in-situ photoluminescent centers in a stable matrix. Poly(methyl methacrylate) (PMMA) coated with o-phenylenediamine (oPD) was thermally annealed at 165oC for a duration of 5 minutes in an extruder to obtain green-emitting composites. The composites exhibited a broad absorption peak at 425 nm and an absorption shoulder at 495 nm. The emission spectrum of the composite was broad, ranging from 400 nm to 700 nm, and reached the maximum at 525 nm. The photoluminescent maximum position was independent of the excitation wavelength. The photoluminescent excitation spectrum of the composite resembled the absorption near 425 nm. Time-dependent density functional theory (TD-DFT) calculations suggested that 2,3-diaminophenazine and 3-amino-2-hydroxyphenazine are the main molecular fluorophores accounting for the optical properties of the composites. The synthetic method demonstrated in this study is transferable for preparing numerous photoluminescent thermoplastics.
References
[1] X. -D. Mai, S. -H. Nguyen, D. -L. Tran, V. -Q. Nguyen, and V. -H. Nguyen, “Single-chip horticultural LEDs enabled by greenly synthesized red-emitting carbon quantum dots,” Mater. Lett., vol. 341, Mar. 2023, Art. no. 134195, doi: 10.1016/j.matlet.2023.134195.
[2] G. Liu, M. Zavelani-Rossi, G. Han, H. Zhao, and A. Vomiero, “Red-emissive carbon quantum dots enable high efficiency luminescent solar concentrators,” J. Mater. Chem. A, vol. 11, no. 16, pp. 8950–8960, Jan. 2023, doi: 10.1039/d2ta09972a.
[3] X. -D. Mai, T. -T. Bui, D. -L. Tran, V. -T. Mai, N. -H. Duong, and V. -H. Nguyen, “One-pot synthesis of homogeneous carbon quantum dots/aluminum hydroxide composite and its application in Cu(II) detection,” Carbon Lett., vol. 34, no. 2, pp. 603–609, Jan. 2024, doi: 10.1007/s42823-023-00676-z.
[4] D. T. T. Huyen, N. T. Quynh, L. T. Hang, L. Q. Trung, D. T. T. Hoa, P. T. H. Yen, M. X. Dung, “The synthesis of polymeric nanocarbon from foods and the application in Pb(II) detection,” TNU J. Sci. Technol., vol. 189, no. 13, pp. 45–51, Nov. 2018.
[5] M. X. Dung, P. Mohapatra, J. -K. Choi, J. -H. Kim, S. -H. Jeong, and H. -D. Jeong, “InP quantum dot-organosilicon nanocomposites,” Bull. Korean Chem. Soc., vol. 33, no. 5, pp. 1491–1504, May 2012, doi: 10.5012/bkcs.2012.33.5.1491.
[6] L. P. Novo and A. A. S. Curvelo, “Hansen solubility parameters: A tool for solvent selection for organosolv delignification,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14520–14527, Jul. 2019, doi: 10.1021/acs.iecr.9b00875.
[7] T. -H. Do Thi et al., “Control the solubility of carbon quantum dots by solvent engineering,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 3, pp. 51–58, Dec. 2023, doi: 10.56764/hpu2.jos.2023.2.3.51-58.
[8] S. Thakur, C. Martínez-Alonso, E. Lopez-Hernandez, M. A. Lopez-Manchado, and R. Verdejo, “Melt and solution processable novel photoluminescent polymer blends for multifaceted advanced applications,” Polymer, vol. 215, Feb. 2021, Art. no. 123378, doi: 10.1016/j.polymer.2021.123378.
[9] S. H. Alrefaee et al., “Electrospun glass nanofibers to strengthen polycarbonate plastic glass toward photoluminescent smart materials,” Spectrochim. Acta – A: Mol. Biomol. Spectrosc., vol. 302, Dec. 2023, Art. no. 122986, doi: 10.1016/j.saa.2023.122986.
[10] Q. -B. Hoang, V. -T. Mai, D. -K. Nguyen, D. Q. Truong, and X. -D. Mai, “Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite,” Mater. Today Chem., vol. 12, pp. 166–172, Jun. 2019, doi: 10.1016/j.mtchem.2019.01.003.
[11] Y. Chen et al., “Continuous productions of highly fluorescent carbon dots and enriched polymer nanofibers via microfluidic techniques,” Chem. Eng. J., vol. 471, Sep. 2023, Art. no. 144444, doi: 10.1016/j.cej.2023.144444.
[12] X. Y. Du, C. F. Wang, G. Wu, and S. Chen, “The rapid and large-scale production of carbon quantum dots and their integration with polymers,” Angew. Chem. Int. Ed., vol. 60, no. 16, pp. 8585–8595, May. 2021, doi: 10.1002/anie.202004109.
[13] M. X. Dung, J. -K. Choi, and H. -D. Jeong, “Newly synthesized silicon quantum dot–polystyrene nanocomposite having thermally robust positive charge trapping,” ACS Appl. Mater. Interfaces, vol. 5, no. 7, pp. 2400–2409, Mar. 2013, doi: 10.1021/am400356r.
[14] Y. Tang et al., “In situ synthesis of MAPbX3 perovskite quantum dot-polycaprolactone composites for fluorescent 3D printing filament,” J. Alloys Compd., vol. 916, Apr. 2022, Art. no. p. 164961, doi: 10.1016/j.jallcom.2022.164961.
[15] X. -D. Mai et al., “Homogeneous and highly photoluminescent composites based on in-situ formed fluorophores in PVA blends,” Mater. Lett., vol. 319, Jul. 2022, Art. no. 132269, doi: 10.1016/j.matlet.2022.132269.
[16] M. X. Dung et al., “The thermal preparation of luminescent PMMA composite using citric acid and ethylenediamine,” TNU J. Sci. Technol., vol. 227, no. 16, pp. 62–67, Oct. 2022, doi: 10.34238/tnu-jst.6470.
[17] T. -T. Pham, V. Nguyen, H. Bui, T. Ha, M. Priyaranjan, and X.-D. Mai, “The one-pot synthesis of photoluminescent polycarbonate based on the pyrolysis of citrate,” HPU2 J. Sci. Nat. Sci. Technol., vol. 3, no. 1, pp. 57–63, Apr. 2024, doi: 10.56764/hpu2.jos.2024.3.1.57-63.
[18] D. -K. Nguyen, T. -S. Le, Q. -T. Le, and X. -D. Mai, “The roles of intermediate fluorophores on the optical properties of bottom-up synthesized carbon nanodots,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 2, pp. 68–82, Aug. 2023, doi: 10.56764/hpu2.jos.2023.2.2.68-82.
[19] P. Li et al., “Formation and fluorescent mechanism of multiple color emissive carbon dots from o-phenylenediamine,” Small, vol. 20, May 2024, Art. no. 2310563, doi: 10.1002/smll.202310563.
[20] J. E. Abraham, P. Kumbhakar, and M. Balachandran, “Fluorescent carbonized polymer dots derived from o-phenylenediamine and its photonic application,” J. Fluoresc., Mar. 2024, Art. no. Abraham 2024, doi: 10.1007/s10895-024-03652-6.
[21] L. Cao et al., “Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors,” Carbon, vol. 194, pp. 42–51, Mar. 2022, doi: 10.1016/j.carbon.2022.03.058.
[22] X. Meng et al., “Intermediate aminophenol enables hectogram-scale synthesis of highly bright red carbon quantum dots under ambient conditions,” Chem. Sci., vol. 15, no. 25, pp. 9806–9813, Jan. 2024, doi: 10.1039/d4sc02331e.
Downloads
Published
How to Cite
Volume and Issue
Section
Copyright and License
Copyright (c) 2024 Mohapatra Priyaranjan, Xuan-Bach Nguyen, Thuy-Trang Pham, Sinh-Hung Nguyen, Huy-Hoang Bui, Ba-Trang Doan, Kim-Dat Ha, Duc-Nam Cao, My-Anh Nguyen Thi, Minh-Anh Nguyen, Le-Duc Nguyen, Van-Phong Bui, Van-Hao Nguyen, Quang-Bac Hoang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.